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Abstract

This report describes the results obtained during the two years of
funding extending from 1/88 to 1/90 in support of our project entitled "The
problem of Robust Compensation for Systems with Unmodeled Dynamics.” The
project has consisted of several lines of research which are quite distinct,
but which show great promise toward combining them into a single comprehensive
theory. Our goal has been to explore the problem of designing feedback
control systems that are insensitive to the presence of high-frequency
dynamics not accounted for explicitly in the mathematical model of the plant.
Some of our previous work suggests that it is possible to design controllers
which simultaneously stabilize a given nominal system as well as a large class
of small singular perturbations of the system. Attached are six papers
summarizing work which has been supported all or in part by the present grant
and which either have appeared, have been accepted, or have been submitted for
publication.
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This report describes the results obtained during the two years’*éﬁ

funding extending from 1/88 to 1/90 with regard to our project entitled “The
Problem of Robust Compensation for Systems with Unmodeled Dynamics." The
project has consisted of several lines of research which are quite distinct,
but which show great promise toward combining them into a single comprehensive
theory. Our goal has been to explore the problem of designing feedback
control systems that are insensitive to the presence of high-frequency
dynamics not accounted for explicitly in the mathematical model of the plant.
Some of our previous work suggests that it is possible to design controllers
which simultaneously stabilize a given nominal system as well as a large class
of small singular perturbations of the system. We say such a controller is
"robust" with respect to the certain class of unmodeled dynamics.

Attached are six papers summarizing work which has been supported all or
in part by the present grant and which either have appeared, have been
accepted, or have been submitted for publication. Two have already appeared
in the IEEE Transactions on Automatic Control, one is scheduled to appear in
the same journal in May, one has appeared in the Proceedings of the 27th IEEE
Conference on Decision and Control, and one is presently under review. In
addition, a summary page is included describing a paper presented at the SIAM
Conference on Control in the 90’s (5/89, San Francisco). We also are in the
process of writing a journal article describing the work carried out in the
the final stage of the project. The manuscript should be available within the
next two months. Part of the research effort over the past two years has béen
carried out by my graduate student Mingde Tan as part of his Ph.D. research.

His dissertation should be available sometime this spring.



Reference |1] contains work which was partially carried out during the
funding period and which was instrumental in establishing the direction
outlined in the original grant proposal. Our basic idea was to explore the
role of parasitics in the performance of automatic control systems, without
having to resort to explicit representations of specific parasitic effects.
It was our desire to develop a comprehensive theory of compensator design
which would guarantee performance in the presence of a large class of possible
parasitic effects. Reference [1] contains preliminary results directed at
this goal.

Along somewhat different theoretical lines, but with a similar class of
engineering problems in mind, references [2]-{4] constitute initial attempts,
carried out with the aid of a colleague here at Wisconsin, Professor Chris
DeMarco, to characterize the geometric structure of the class of system
perturbations under which a control system retains stability and perhaps other
performance characteristics. Contained in [2]-(4] is a thorough treatment of
the case where system order is constant (the nonsingular case). Our more
recent work may be viewed as extending these results to the case where
parameter variations can cause changes in system order (the singular case).

Reference [5] summarizes the work carried out by my graduate student,
Mingde Tan, and me over the initial phase of his dissertation research (the
first year of the funding period). Our principal idea was to study the
effects of small system perturbations on internal closed-loop stability.
Ultimately, we wish to examine many of the recent robust control theories of
Vidyasagar, Zames and Francis, Stein and Doyle, and others in terms of
internal closed-loop system behavior. For example, suppose a plant model is
given and a corresponding compensator is designed using some methodology such

that the closed-loop configuration is input-output stable. The design methods




of the researchers just mentioned typically guarantee that, for a certain
class of perturbations of the plant (and sometimes the compensator), the
corresponding perturbed closed-loop system is also stable in an input-output
sense. It would be highly desirable to know whether the perturbed closed-loop
system is internally stable as well. From our perspective, it is especially
crucial that the compensator be insensitive to perturbations corresponding to
unmodelled high-frequency dynamics.

In order to formulate this problem precisely, one must first develop an
understanding of how internal system structure is affected by perturbations of
the transfer function. To this end we have developed a "perturbational”
analogue of the standard state-space realization theory for rational matrices
In our theory, families of rational matrices are considered (either convergent
sequences or continuous parametrizations); it is desired to find corresponding
(convergent) families of state equations which realize the given transfer
matrices. We have obtained results that show, for example, that every such
family of transfer matrices has a realization and that "minimality" of a
realization can be related to both the degrees of the given :ational functions
as well as to controllability and observability of the realizations
themselves. In short, we have succeeded in developiné the perturbational
analogues of the standard results concerning realization of a fixed rational
matrix. This body of results is among our main accomplish@ents in the past
two years.

Based on our understanding of the fundamental issues surrounding internal
realizations of pe;turbed transfer functions, we have spent a large portion of
the past vyear exploring the relationships between robust input-output
stability and robust internal stability. We have succeeded in establishing

simple conditions under which internal as well as input-output sthbility is
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robust to parasitic model uncertainty. These results form the second half of
Mingde Tan's dissertation and are presently being organized for journal
publication.

In addition to the work with Mingde Tan, 1 personally have continued the
effort [ began in 1986 which addresses questions similar to those described
above related to internal behavior of robust closed-loop systems. The
culmination of this effort so far is the paper [6] which shows that robust
design methodologies necessarily must incorporate some internal system
information; the exact form of the "minimal" internal information is as yet
unknown. A recent breakthrough has been summarized in [7] which was presented
in May 1989 at the SIAM Conference on Control in the 90's in San Francisco.
(There were no published Proceedings for this conference.) For a certain
large class of linear systems, it is now possible to precisely characterize
the family of singular perturbations under which closed-loop stability is
retained.

Overall, our two-year research effort has been fruitful, answering many
important questions and leading to new ones. In the final analysis, the
entire body of results we have generated is not as coherent as we original
hoped for; however, we feel that, given the time-limit set for the project,
the progress made in each research direction more than compensate for this

fact.
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(1] J. D. Cobb, "Toward a Theory of Robust Compensation for Systems wiﬁh
Unknown Parasitics,"” [EEE Transactions on Automatic Control, Vol.- 33;
No. 12, December 1988.
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Toward a Theory of Robust Compensation for
Systems with Unknown Parasitics

J. DANIEL COBB, MEMBER, IEEE

Abstract—We consider the problem of designing a robust compensator
based on 2 plant model with order uncertainty. The uncertainty is
characterized mathematically as a class of generalized singuiar perturba-
tions of the plant. This paper considers the case of siatic compensation, A
necessary and sufficient condition is established under which actual
closed-loop behavior is close to that predicted by the plant model under
sufficiently small singuiar perturbations. The condition is shown to be
generic.

I. INTRODUCTION

"JYHE problem of robust compensation may be roughly stated as

that of designing a good controller for a given physical system
on the basis of a model which contains less than complete
information about that system. The resulting closed-loop configu-
ration should exhibit reasonable performance in spite of the
uncertain aspects of the system. In the strictest sense, every model
contains uncertainty; hence, any good controller design should
address the issue of robustness,

Among the many types of robust control theories appearing in
the literature is the asymptotic approach. Typical results in this
area guarantee reasonable closed-loop performance under suffi-
ciently small perturbations of a nomial model (e.g., variations in
the coefficients of a single differential equation). Although only
local in nature, such results are often a first stép in developing a
global theory where an explicit characterization is attained for
classes of systems which can be simu!taneously compensated. The
results of this paper fall into the asymptotic category.

It is possible to view most asymptotic robustness theories within
a common mathematical framework, Let @, Q, and 3 be
topological spaces, and let ® C @ Xx Q inherit subset topology.
®, Q, and 3 correspond to the sets of all possible models of
plants, compensators, and closed-loop systems, respectively. The
topologies on ® and @ are chosen so that small pertutbations
characterize measurement error inherent in developing each
model; small perturbations in the topology of J reflect tolerable
closed-loop performance error, If ® is interpreted as the class of
alt plarit-compensator pairs which lead to closed-loop systems that
are well-defined and which satisfy any additional constraints
present in the design problem, we may naturally define the loop-
closing map C: ® — 3 which takes each plant and compensator
into theit corresponding closed-loop configuration. Many robust-
ness questions then reduce to that of finding the points of
continuity of €. In other words, we wish to characterize the class
of all plant-compensator pairs such that small perturbations of
each pair result in small perturbations in the closed-luop system.

Manuscript received July 6, 1987; revised May 25, 1988. This paper is
based on a prior submission of June 5, 1986. Paper recommended by Past
Associate Editor, J. B. Pearson. This work was supported in part by the
National Science Foundation under Grant ECS-8612948 and in part by the Air
Foree Oifice of Scientific Rescarch under Grant AFOSR-88-0087.

The author is with the Department of Electrical and Computer Enginecring,
University of Wisconsin-Madison, Madison, W1 53706-1691.
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We now examine various existing theories which lie within the
asymptotic framework. The most obvious body of such results
centers around the well-known fact that, for state-space models,
the parameters of the closed-loop system are continuous functions
of the open-loop plant und compensator parameters. For example,
if we let @ be the set of all matrix triples £ = (A4, B, C) and Q
consist of all feedback matrices KX, and if we combine £ and Kina
standard way, then ® = @ x Q and J consists of triples C (¢, K)
= (A + BKC, B, C). Adopting Euclidean topology oft @, Q, and
J, it follows that € is continunus everywhere, i.e., every
compensator is robust relative to every plant, One immeédiate
consequence of this observation is that closed:loop éigenvalues
are continuous functions of plant and compensator parameters;
hence, every stable closed-loop configuration remains stable
under sufficiently small parameter variations, These facts are used
routinely in fany control system analyses without explicit
mention. It should be noted, however, that the pérturbations
considdered here do not alter ¢ither plant or compensator order.,
Therefore, this approach alone is inadequate when dealing with
order.uncertainly.

The main body of existing results that does deal with order
uncertainty in an asymptotic setting can be broadly termed
singular perturbation theory (see [1]-[3]). Here a typical analysis
treats a parametrized system of the form

r o}, |4y 4. B,
[0 61] *= [Azl Au} X+ [BZ,‘] "
y=[C Gjx 't))

with A, stable and seeks to achieve some closed-loop perform-
ance criteria for all sufficiently small ¢ = 0. (In this case, we
might take @ = {0, c0).) A major drawback with this approach is
that explicit knowledge of the parasitic structure giving risé to
order uncertainty is assumed. If more than one perturbation (1)
need to be considered, serious problems may devélop. For
example, the system

1 0 ¢ i { 0 f

0 ¢e 0} x=10 -1 Ol x+10ju

0 0 ¢ i 0 -1 1
y=[-110}x (2)

is nominatly (¢ = 0) unstable, but can be stabilized with the static
compensator ¥ = 2y, The perturbed system (¢ > 0) is also
stabilized by the same compensator for sufficiently small e.
Setting ¢ = 0, premultiplicaiion of (2) by the matrix

1
M=}0
0

L e ]
— N O

yiclds an equivalent system equation which may in turn be

0018-9286/88/1200-1130801.00 © 1988 IEEE
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perturbed according to

1 00 | 0 1
0 ¢ O0jx=72 -1 -2}x+}2}u
0 0 e 1 -1 1
y=[=11 0}x. 3

In this case the compensator u = 2y yields a perturbed closed-
loop system having a par of cigenvalues Ay, and A, with
Re A\, = +o as ¢ = 0'. Such divergent behavior does not
coincide with any reasonable definition of small perturbations in
3. We may therefore conclude that examination of a single
parasit’ : effect is in general not sufficient to guarantee robustness
of a compensator with respect to other order uncertaintics.

Additional singular perturbation results include the multiple
time-scale extensions [7] and [8] and the robust compensation
theorems of {5]. Multiple time-scale techniques suffer from the
same drawback as single time-scale analyses based on (1) in that
they assume an explicit knowledge of parasitic structure. Also,
much less is known about the e-dependence of the time response
of multiple time-scale systems than in the single time-scale case.

In 5] it is shown that any compensator having a strictly proper
transfer function matrix, which stabilized (1) with e = 0, also
stabilizes (1) when ¢ > 0 is sufficiently small. Furthermore, it is
shown that the corresponding family of closed-loop transfer
matrices converges uniformly on compact subsets of the right-half
complex plane as e = 0. These results thus provide a means for
robustly compensating a system in the presence of a large class of
possible perturbations. Onc drawback to this theory is that only
single time-scale systems (1) are treated. In practice, a much
larger class of perturbations may be required to model all relevant
effects. Additional problems are that the results of [5} do not take
into account uncertainties in the compensator model and that
uniform convergence on compact sets in @ is difficult to relate to
time-domain performance of the system.

Another notable asymptotic robustness theory is that of (6]
where the graph topology is introduced. Let @ and @, each be the
space of all rational matrices, J the space of strictly proper and
stable rational matrices, equipped with the H., norm, and ® =
€-1(3). The graph topology is the weakest topology on @ and §
under which € is continuous. We have shown in [9], however,
that singularly perturbed systems generically do not converge in
the graph topology; hence, in this sense, robust compensation in
the presence of order uncertainty is unattainable.

In view of the shoricomings of the existing asymptotic
techniques, we wish to propose a framework as well as some
preliminary resuits for an alternative robustness theory which will
be taken into account: 1) multirate and other relatively unexplored
classes of singular perturbations; 2) the necessity of dealing
simultaneously with a large class of system perturbations, each
corresponding to a possible higher order model; and 3) time-
domain behavior of the closed-loop system. Although treatment of
1) and 2) seems on the surface to be a formidable task, we will see
that it is possible to approach the problem in a roundabout way,
thus avoiding having to explicity characterize all possible parasitic
phenomena. We feel that the inclusion of 3) is a desirable feature
for any good robustness theory, since the goal of system design
must ultimately be satisfactory closed-loop time response. In view
of this fact, a time-domain approach has certain advantages over
frequency domain techniques, since the relationship between time
response and frequency-domain behavior can be rather complex.

Before becoming too engrossed in technicalities, we will briefly
describe (in rough terms) the problem we wish to address.
Consider the system

Ex=Ax+ Bu
§: @)
y=Cx

N
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where E, A, B, are real matrices with £ and 4 square. We
assume that (4) exhibits existence and uniqueness of solutions for
each initial condition X and each input function u; from [17] we
know that this is equivalent to

|SE-A| % 0,

Such systems have been studied extensively (e.g., see [141-[16]),
and are referred to as singular when E is singular and regulae
otherwise. The polynomial

A(s)=|SE-A| &)

may be considered the characteristic polynomial of (4) and its
roots the cigenvalues of £. An important property of singular
systems is that small perturbations in the entries of E and A cun
change the system order; one example of this phenomenon is (1).

Suppose we wish to find a compensator of the form ¢ = Ky -
v which is robust with respect to perturbations in E, A, Band C.
Since we are inevitably interested in time response, we might ask
which compensators result in a closed-loop system whose time
response vaties continuously with E, A, B, and C, regardless of
the perturbation. Unfortunately, it is easy to show that for any K
there exist perturbations in the system matrices that yield
divergent behavior in the closed-loop system trajectories for some
initial conditions. A more meaningful problem can be formulated
by first observing that not necessarily all perturbations in the
matrix entries of (4) are physically realistic. For example, a
simple RC circuit consisting of a single resistor, capacitor, and
voltage source may be modeled as

eX=—-xX+uU

y=x (©)

where x is the capacitor voltage, R = I, and C = ¢. Positive ¢
makes perfect physical sense, and it seems reasonable to try to
design a compensator based on the low-order model correspond-
ing to ¢ = 0. On the other hand, if ¢ is negative, the system
engineer could not expect to produce a robust compensator
without first being aware of the negative capacitance and then
using an appropriate higher order (in this case, first-order) model.

A simple way to characterize physically meaningful perturba-
tions in the plant 1s to look at their effect on plant trajectories for
various inputs and initial conditions. For example, in (6) an initial
condition X, = 1 yields x(f) = e~** which converges on compact
subintervals of (0, o) as ¢ = 0+, but diverges as ¢ — 0-. Strictly
speaking, we are really not saying as much about perturbations of
(4) which can occur in the physical world as we are about those
perturbations which are consistent with the measurements taken
while formulating our plant model; a system model is good only if
it is capable of predicting the behavior of the actual physical
system,

We may now state our definition of asymptotic robustness more
precisely. For a given plant of the form (4), a compensator is
robust if all perturbations in both the plant and compensator,
which bring about only small variations in the trajectories of each
system individually under all inputs and initial conditions, resuit
in only small variations in the closed-loop system trajectories. The
meaning of the phrase small variations will be precisely defined in
Section 1. In the same section we will see that our approach
implicitly incorporates the idea that small system variations
should correspond to only smail changes in system parameters.

II. PRELIMINARIES

In this section we summarize the constructions of [10], [11],

{2]. and |14] which are pertinent to subsequent developments.
t

Z(n, m, p)={(E, A, B, C) € Rr+m+P)| |sE—~A| v 0}
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and let £(n, m, p) be the corresponding quotient manifold (see
{18]) determined by the equivalence

(E\, Ay, By, C))=(E;, Ay, By, ) iIf C,=C; and
3 nonsingular M s.t. ME,=E;, MA,=A;, and MB,=B,. (1)

(The arguments n, m, and p will be dropped when clear from
context.) We choose the equivalence relation (7) because pre-
multiplication by M has no significant effect on the system
representation. Indeed, premultiplication by M merely performs
elementary row operations on the system of scalar equations (7).
Hence, we are merely identifying systems formed from cach other
by reshuffling the equations. We do not wish to identify systems
which are related by a coordinate change on the state variable x,
since this would reduce the system space to one consisting of
input-output descriptions. Our intention is to produce results
which exploit internal information.

The equivalence class containing ¢ = (E, A, B, C) is denoted £
= [E, A, B, C]. In this case, we say o represents £. Let

r=ord o=ord £ =deg A

where A is the characteristic polynomial (5) of £, and note that a
unique matrix C is determined by each ¢ € £. A sequence {, €
£ converges weakly to £ € £ (¢, = £) if £ ~ ¢ in manifold
topology. Since £ is a quotient manifold, the natural projection
(E, A, B, C) - |E, A, B, C] is continuous with respect to weak
convergence. Conversely, we have shown in [10] that, for each
convergent sequence £, = £ in £, there exists a sequence (Ex, Ax,
By, C)— (E,A, B,C) € Tsuchthat[E, A, B, C] = £ and [E;,
A By, Ci] = &, for every k.

Let £, ™ ¢ = [E, A, B, C] with E singular. In {11] is shown
that there exist nonsingular matrix sequences M, — M and N, ~
N such that

’ A 0
MEN, = [3 :ﬁ(] .MgAka=[ o’k ln_’] ®)

where r = ord £, A, = A,, and A — A, with A, nilpotent. For
sufficiently large k, the matrices A, and A, are unique up to a
similarity transformation. For a constant sequence, the decompo-
sition (8) reduces to the Weierstrass decomposition for matrix
pencils (see [17))

- Il‘ 0 —_ Ag 0
MEN= [0 A,] » MAN= [ 0 In_’] . v

The matrices M and N may also be used to decompose (4),
yielding

B
MB= [a}] , CN=(C; C/l.

Referring to [14], we say that (4) is slow controllable if and
only if

rank [NE~A4 B]=n (10)
for every A € @ and fast controllable if and only if
rank {E B]l=n. (n

The system is controllable if and only if both (10) and (11) hold.
In addition, we say that (4) is impulse controllable if and only if

Im A+ Ker Ap+-Im By=R", (12)

(All four system properties can also be defined directly in terms of
the solutions of the differential equation (4), but we find the linear
algebraic characterizations more useful in the context of this
paper.) Controliability and observability imply impulse controfla-

bility and impulse observability, respectively. The corresponding
definitions for observability are dual to (10), (11), and (12) (sce
{14]). Since each of these definitions is invariant under the
equivalence transformation (7), we may also consider the subsets
Lo sfn Lo Liev L40) c/m Loy £y C £ determined by (10),
(11, (12), and their duals, as well as the controllable and
observable systems £, = £, N £,,. Various properties of these
spaces are studied in {13]; for exumple, £, und £, arc open, and
&£, and £, are dense in L.

Other important subsets of £ are the singular subspace £°,
consisting of all points [E, A, B, C} with E singular, the regular
subspace £ = £ — £, and the subspuce of unit index systems

Li={t € &£ |deg |SE-A|=rank E}.

In [10] it is shown that £" is open and dense in £; from {13}, £,
N £ is dense in £,

Let D be the set of all C* functions ¢: i} — [ with compact
support and let O, be the space of distributions with support in
[0, o) (see [19]). To define convergence in ., we adopt the
weak* topology: A sequence f, € D, is said to converge to f if
{f, ¢) forevery ¢ € D, where (%, ¢) denotes the functional f;
evaluated at the point ¢.

Associated with each initial condition x, € [R" and each
piecewise continuous input u there exists a unique solution ¥,,,
(§:) € D" of the system &, (see [17]). From linearity it follows
that the solution can be decomposed into natural and forced
response

‘pxou(Ek) = \I'xoo(fk) + You(ke).
Letting

Bu | _ - Xosk | . A7=1
[Bﬂ,] =MBy, [Cu Cul=CiNy, [xon] Nilx

¥iulEO
ot =1V—'\px w(€ (13
[w{ou(ek)] ¢ Yaoul80) ‘
we have from [17] that

¥ 5 oulEx)=cxp (Au)Xo+exp (Au) * Buu (14

where exp (4) € D 2 is defined by
exp (A)()=e"

and *‘*" denotes convolution. Bach ¥:  satisfies several
properties of continuity. Indeed, convergende of A, guarantees
uniform convergence of exp (4y) on compact intervals and,
hence, weak* convergence. Continuity of convolution with
resp.ect 1o both types of convergence assures that each sequence
¥, (Ex) converges weak* and uniformly on compact intervals
whenever £, 2 ¢. Furthermore, since Wogu (£) = W3, () for &
€ £, ¥,,, satisfies the same properties when restricted to £,

To aid in writing a general expression for ¥/ ,(£+), we note
that there exists a nonsingular matrix sequence T} (not necessarily
convergent) such that

Ap 0
;! =| "X 15
w5 4]
where Ay, is nonsingular and A, is nilpotent. Then from {i7],
exp (A7) 0
k! ~1

¥/ (&) =T S o T ' Xon

in}
exp(Ap) s A5 Bpu

+ Ty _°§' A (16)

in0

— e ————— -
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B/‘ -‘
[éﬂ] =T B

and &/ and u' denote the ith distribution derivatives.

where

III. PROBLEM FORMULATION

We are now in a position to precisely state the basic problem
under consideration. For two reasons we are forced to select a
rather abstract mathematical framework for our constructions.
First, since perturbations leading to changes in order require the
use of systems of the form (4) and since such systems can have
impulsive solutions, the space D, of distributions and its
associated weak* topology underlie all analyses. Second, it will be
seen that in order to meaningfully incorporate the idea that small
system perturbations should lead to only small changes in the
entries of the matrices E, A, B, and C, it is necessary to identify
systerns according to the equivalence relation (7). Hence, we must
work with the non-Euclidean system spaces £(n, m, p).

We consider the problem of compensating the piant model (4)
with a static system of the form

u=Ky+v (17)

where K is a matrix and v is an external input. Let ® = £(n, m,
p)and € = ™, and note that the closed-loop system takes the
form

Ex=(A+BKC)x+8v
C(t K): (18)
y=Cx.

In general, the system (18) may not exhibit existence and
uniqueness of solutions or may respond to certain initial condi-
tions with impulsive transients (see [15], [17)). Since we are only
interested in choosing a compensator such that the resulting
closed-loop system does not suffer from either of these defects,
we restrict attention to

R={(£, K) € ®xQ |deg |sE~(A +BKC)|=rank E}. (19)

Adopting (19) is equivalent to assuming that (18) has unit index;
hence, we may set 3 = £,(n, m, p). Note that the loop-closing
map C is continuous with respect to manifold topology on £
(weak convergence); i.e., small changes in the entrics of E, A, B,
C, and K bring about only small changes in the closed-loop
system matrices.

We say that a sequence £, in @ converges weaklyto £ € @
¢G> B if Weou(Ee) = Vyou(£) weak* for every xo and u and if C,
~ C. On the other hand, we say that a sequence & € J
converges strongly in 3 if each ¥, (£;) converges uniformly on
compact subintervals of (0, o) and C ~ C,. Uniform conver-
gence of solutions is meaningful for systems in 3 = £, only
because unit index systems have no impulsive components in their
solutions (see [17]). We have shown in {10] that strong conver-
gence in @ implies weak convergence in ®@.' It is easy to verify
that strong convergence in J implies convergence of each
¥ .qu(Ee) in the weak* sense (see [19]); hence, strong convergence
implies weak convergence in J as well.

Although strong convergence of £, does not necessarily imply
that the entries of the system matrices E;, A:, B, and C;
converge regardless of the representation (4) of £, such a strict

! Acwatly, it is shown in [10] that convergence of ¥,0(Es) for every x,, u
guarantees convergence of £, in manifold topology when u runges over 7, It
is easy to show, however, that the same result holds when u is restricted to be
piecewise continuous.
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requirement would not be particularly raeaningful, siricé prémuiti-
plication of (4) by any nonsingular matrix prodices an éiitirely
equivalent representation, From (10} it does follow that- strong
convergence of £, implies convergence of. some representative
sequence (Ey, Ay Biw Ci) € I(n, m, p). We ate therefore
justified in interpreting weak convergence in & and J as
convergence of system parameters and stating that a pertiitbation
of a system which yields only small changes in system trajéciories
also results in only small variations in system paramétess.

A plant-compensator pair (¢, K') € R is asymptotically robust
(or K is a robust compensator for £) if C(£, Ki) > C(£, K) for
every Xo, 4 whenever £, £ and K, — K, This is equivalent io
continuity of the loop-closing map € at (£, K') with respect to
strong convergence in & and J. It is routine to verify that our
definition of robustness can be couched in terms of topologies on
@, Q, and 3 simply by imposing on each set the weakest topology
that makes each map ¥, continuous (see [20]). Our main
problem of interest is to characterize the class of all robust plant-
compensator pairs of (£, K) € ® for any given values of n, m,
and p. Equivalently, we seek to describe the class of all
compensators K which are robust with respect to a given plant
model £.

IV. THE CLASS OF ASYMPTOTICALLY RoBUST COMPENSATORS

We begin by presenting a result which formalizes the intuitive
idea that robustness can fail to hold only when the plant model (4)
is singular. Note that when (4) is regular (¢ € £7), ® = R"™,

Proposition 3.1: 1f £ € £7, every K € R™ is robust. .

Proof: Choose K, X,, i, and sequences K; — Kand £, £.
Then C; — C. Since £" is open in manifold topology, £, € £"
for sufficiently large k. From [10], £, ™ £ so co‘gninuify of € with
respect to weak convergence implies C(E,, Ki) = C(£, K). Since
each ¥, , is continuous on £” and C(£" x R™) C £, we have

¥rgu(C &k, Ki)) = ¥rqu(C (£, K)). -

Before starting our main result on robustness, we need to
consider one more algebraic system property of (4). We say thata
system (4) is fast cyclic if, in the Weierstrass decomposition (8),
the nilpotent matrix A, is cyclic. If A, is in Jordan form, fast
cyclicity is equivalent to

Hence, from (9), a system (4) is fast cyclic if and only if rank E =
n — 1. Note that fast cyclicity is independent of the choice of
representation for £.

In order to prove that a certain algebraic condition on the
compensator K is well defined, we next present a pair of lemmas,
It will eventually be proven that this condition is necessary and
sufficient for robustness.

Lemma 4.1: Let N and T be any n X n matricés with N
nilpotent and having index g. Then Ker N is N ¢~! T-invariant.
N Proof: Since N(N?-'T) = NIT = 0, Im N9-'T C Ker

. Hence,

(N"'T)Ker N C Ker N, -

Note that, if N is cyclic, Ker N is one-dimensional,
Lemma 4.2: If £ € £7 s fast cyclic, impulse controllable, and
impulse observable, and (4, By, C;) is obtained from the
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Weierstrass decomposition of any representation of £, then

A}-r-l([n_'+8/KC/) {Ker A/>0 (20)

determines a nonempty open affine half-space in i#”” which is
independent of the representation, (The vertical bar denotes the
restriction of the linear operator to the subspace Ker 4,.)

Proof: In view of Lemma 4.1, (20) is well-detined. For the
caser =n - 1, Ay = 0and

A;"'I(I+B/KC/)=1+B/KC/- (21)

For r < n = 1, choose a nonsingular T so that T-'A4,T is in
Jordan form. Letting

by

=T-'B;,lc, *** Caur]=C/T 22)

ba-r

we know from (14] that impulse controllability and impulse
observability guarantee b,., # 0 and ¢, # 0. Also,

A" VIy-,+ BKC))

=T [%l—rKcl 200 by, Kenoray l+bn-rKcn;)r] -1,

Hence,

A3tV (Ip-,+ B/KCy) |Ker Ap=by_ Key., (23)
ge{ting (21) and (23) positive determines nonempty opea affine
alf-s
From [ll], (A, By, Cy) is unique up to similarity transforma-
tion for a given £. Clearly, similarity transformation does not alter
(21), so the resulting half-space is unchanged. To see how (23) is
affected by similarity transformation, note that (23) means

A"yt BIKCp)x=by_ Keyx
for any x € Ker A;. Let 2 = T-'x. Then
T-'A3~""\(I,.,+ B;KC/) Tz=by.,Ke2
§0
(T TY=1=1(], 4 (T-1B))
* K(C;TH(T ! Ker Af)=b,_.Ke,.

But 7! Ker A, = Ker (T-'AT) so the resulting half-space is
again unchanged. (]

A final technical lemrma is needed to prove our main robustness
theorem,

Lemma4.3: Letay; { = 0, ++ -, u be convergent sequences in
mwathaa,nt()foreveryk and let fiz: R-o®i=1-v-
1; k = 1,2, +++ be continuous at the origin and sausfy Ji(©@) =
0, whzre v > u. Then there exists a sequence ¢ in (it such that for
each k:

1) 0< &) < VK

2) sgnoeg = —SEN Ty

3) the polynomial eks' + f_ ,,(e,, S o4 e 4
Suerale)s"* ! + (@ + furla))s® + - + (an + flk(fk))s +
ao has at least one real root A\, with A\, >

Proof: Fix k, let oy = —1/ sgn a,.k, and consider the
sequence (in /)

piS)=ays"+fyrulap)s” 40
+f,01(0)s* 4 4+ (@t foa(ay))s¥ + -

+ (e +S1e(oy)) s + G - (24)
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From [12, Lemma 4.3}, p, can be factored as

r—p
PUS) =@ (P + by, 5% 14 ek byy) H (oys=1)  (29)
Y

where each o;; —+ 0 and @) by i=0, ~ 1 all converge.
Equating the cocfﬁucnts in (f4) and (25) of s* and s* yiélds

r-p

=, ‘II 9y

= (= 1) lim ¢;.
For sufficiently large j it follows that

=y
sgn H Oy=Sgn a; Sgnh ¢;
i=]

= —5gn a,, sgn lim ¢;
._.._(_ l)v-ud-l.

Hence, for each sufficiently large j there must exist an § such that

oy € R, 0;>0.

Since o, = 0, there exists j > k such that 1/0;; > k. Set\y = 1/
Jij and & = Q.

Our main result, Theorem 4.4 completely characterizes the
robust static compensator gains K.

Theorem 4.4: Let t € L£°.

1) A robust K € ®P™ exists iff £ is fast cyclic, impulse
controllable, and impulse observable.

2) Under the conditions of part 1), X is robust iff

AB=r=1(I1+B/KCy) |Ker A;>0. (26)

Proof:

) (Necessary): Let r = ord £, We need only consider the case
r<n - |1, sincer = n — | implies £ is fast cyclic, impulse
controllable, and impulse observable (see [14]), Suppose r < n ~
1 and choose a representation (E, A, B, C) for £. Invoke the
Weierstrass decomposition (9), select a similarity transformation
to put A, in Jordan form, use the notation (22), and let

0 ., n 1
=T"A,T. 1))
’ Yr=r=t
"0

(Each v, is either 0 or 1.) If & is not fast cyclic, impulse
controllable, or impulse observable, then either y; = 0 for some /,
b,-, = 0, or ¢, = 0 (see [14]). Choose nonzero sequences v;; -
Yis b,,-,'k = by_ry Ok = ¢, and K — K such that

n-r=1i
bneraKicre TT va<0 (28)
i=l
for every k, and define
b

B/k=T f ' C/k=[¢.‘gk02 soe c,,_,lT" (29

bn-r-l

bn—r.k

)
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X T

= “‘- -1
Ap(x)=T . Yr-r-Lk T~ (30)

X

Now, we may uniquely define sequences @ i = 0, *++, n = 1
and polynominls pu; i = 1, o, n = 1, with p(0) = 0,
according to

x~~'s*+(a,,-.,,,+p,.-|,k(x))3"" + o0 @+ Pri(X))s + aor

-B.KiCn

|sI-(A,+BKC)
- SAjk(X)-‘(I'PBﬂ(Kkak)

- BuKiC;

By elementary matrix arguments,
A-r-1

@i k== D" bp_riKice T] vae- (31

in}

Letting fix(x) = pu(x"*-"), » = myand g = n —~ 1, we may
select a sequence ¢, satisfying the properties in Lemma 4.3 and

define
ag= - (l) I/(n-r)‘
€k

Since ¢, = 0 and sgn e, = ~sgn @,- 4, (28) and (31) guarantee
that o, — + o0, If we set

I, 0
—Ag-! -1 =
Ek"'M 0 Afk (_—l.) N 'Ak A
Qx
B=M-'| B |, c=1C CaN-! (32)
& By » Lk s “/k
we have
det (SEx—(Ax+ B K Cy))

=B(exS"+ (n-1,k+Sn- 1 k(€)™ 40
+ (@ +Si(ex))s +aoe) (33)

for some constant 8. From Lemma 4.3, (33) has at ieast one real
root A, > k for every k. Since (33) is just the characteristic
polynomial of the closed-loop system C(£, K'), (15) shows that A,
must be an eigenvalue of the closed-loop A 7ofor sufficiently large
k. Thus, exp (/I,'," ) cannot converge uniformly on compact
subintervals of (0, o0), since this would imply uniform conver-
gence of its eigenvalue exp (X, ). Letting # = 0, it follows from
(13) and (16) that ¥, (C(£, K)) does not converge for every xo.'

In order to prove lg;t K is not robust, we have only left to show
that ¥, ., (£x) = ¥,,.(£) in the weak* sense, where &, = [E}, As,
By, C;]. To do 30, we note that

p 1\t 1\-1
\I'Wk=exp Ap "o )Xo+ Ap ~

T ym SRR eE Y

-

where
ARANCIY
exp(tA,,,(—a—k) ) ,‘gl!@e .
o 0, vu &

,

I s
o Yampeiik L
Lot

and
A -—l- —‘ex tA --l- -
N\ PA*\ "
_wld o,
=0 itds's sm-Vap .
0, Yik !
', ‘7n-r-l.l: * B’k“'
‘o
Consider the matrix
LI
Ak
zk= v, !
L
Qg

A rou‘tinc calculation shows that the (i, j)th entry of Z;! exp
(t3;Yis

1 a1
Uljk-"—‘m Ej‘_—l (; e”")

It was shown in the proof of {10, Theorem 4] that

Jel.

s
sm = 1/ay

.y 5 - . ga-r-1m
Tlexp (B0 - . . ,
]
ko l -

Therefore, oy = —8&/~' for each j = i, and ¥/ .~ ¥/ for
any xqu. It follows from (13), weak* continuity ot convo 8‘t'ion.
and continuity of ¥, that ¥, (£x) = ¥ ().

(Sufficient): Let £, be any seguence in £ such that ¥,,.(§:) —
¥ ,u(8) for every xou and with Cx — C. Then, from [10], &, — ¢
and the decomposition (8) may be invoked. It follows that

| My} |SE=Ax]| | Ni| = |sl,~Aul |sAp—1In-,]

for any convergent representation (Ey, A, Bx, Ci). Suppose
(- 1)"="|Ap| < O for infinitely many k. Since {A g is just the
product of the eigenvalues of Ay, there exists a subsequence of
Ay, with at least one real, positive eigenvalue for each ;. It
follows that A7 has an eigenvalue A, = oo, Let ¥ = 0 and
observe that ~ /

(‘I'ﬁo.,(fk,). ¢) grijﬂﬁ/

ha e
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where

Iy = S: $(D)e(tA ) dt.

A function ¢ € D can always be chosen such that an eigenvalue
of Ty satisfies

S: exp ()-‘f)qS(l) dt—oo,

Hence, ||Ty, || ~* oo. It follows that I'yxos is unbounded for
an appropriate choice of xp and that ‘I’{ou(fk) and [from (13))
W.ou(§e) are not convergent. This contradiction leads us to
conclude that (—1)"~"|A,] = 0 for sufficiently large k.

Appealing to the notation of (22) and (27), we have b,_,, ¢; #
Oand, ifr<n -1,y = -** = 9.,y = |, Choose K to
satisfy the condition (26). For r = n — 1, (21) indicates that 1 +
biKe, > 0; for r < n ~ 1, (23) implies that b,_,Kc, > 0.
Defining

Ar(s) = |SEx = (Ax+ Bi K Co)|

we have
[ Ml Bx(s)I Ni|
_ |l = (Au+ By Ky Cut) = Bu Ky Cp
—BkakC“ SA}}"([,-,*‘ Bkakak)

=|Ap|s"+(ci - |Ap|tr(Aa+ BuKiCu))s™ 1 4+
(34)
where ay is defined by
|8Ap=(In-r+ BaKxCp)l = | Apls="+oysm ==t oo e,
From elementary matrix arguments we have, forr < n - 1,

|sAs=(In~r+BKCp)| = (= 1)~ by Keys"=" =14« o

ifn-r=1

ifn-r>1. 33

o {-(+bKe)
hmak {(”l)"-'b"-,KCg

From our choice of X it follows that the closed-loop system C(£,
K) exhibits no impulsive behavior in its natural response, i.e.,
ord (¢, K) = rank E = n ~ 1. Hence, from [12, Lemma 4.3]
we know that

n-

| My} 8() Ve = tutoxs = 1) T (s— M) (36)
1

in

where ¢4, 0;, and \; all converge and lim o, = 0. Matching
coefficients in (34) and (36) yields

wiox=|Anl (37
fim o= — lim . (38)

From (35) and our choice of K, (- 1)*=7 lim o < 0. Hence,
from (38),

(~ 1" lim gg=(— """+ lim a; <0.
Thus, (—1)"""¢ < 0 for sufficiently large k, and

(=1 Ag]

HETED e
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Applying the decomposition (8) to the closed-loop sys“ferii yields
nonsingulur transformations M, and N, such that

ME A= [1”6" 0 ] s Mi(Ag+ BiKiCi) Ny = [Ao'* ?]

Ok

M By = [g}:] s CulNg=1C Cpil

where all sequences converge. The decomposition (13) may also
be applied to the closed-loop system yielding

. ¥
Y€t =i [q,ggﬁ:;] .

From Lemma 4.3, ¥; (&) = ¥; ,(£), and

1 1 |
exp (-—-) Xopx+— exp (—) * Bpu if 0, <0
¥ (k0= o o\

Xq¥
-—E/k“
50, as in the necessity proof of part 1), ¥/ (&) ~ ¥/ ,(§) for

]

any Xo, . Hence, ¥, ,(C(£)) - \p,o,,(e("e)) and K is robust.
2) (Sufficient): This part has already been treated in the
Sufficiency section of 1),
(Necessary): Invoke the Weierstrass decomposition (9). If (26)
failsandr = n — 1, wehave | + B,KC; < Oso B, # Oand C;
# 0; hence, there exists a sequence K, — K such that

1+B/KCy<0 (39)

for every k. Now define ay, ° **y Br-rik

according to

*oy Apotgs B

XS4 (@ Bra 1k X)S" s+ (@04 BraX)S + dox
_ Sln_|-(A,+B,KkC,) —B_,KkC/ .
- - B/KC, xs={1+B/K,Cy) ’
Then
Ay k= -1 +B/Kij). (40)

Letting fix(x) = BiX, we can find a sequence ¢, satisfying the
properties in Lemma 4.3; define ayx = — 1/¢;. Since e, 0 and
SgN € = — SN dy- 14 (39) and (40) guarantee that o = + oo, If
we set

Inoy O
Ex=M"-! 1 N-Y, Ay=A
0 -—
213
By=B, C;=C

we have that det (SEx — (Ax + BiK:C:)) has at least one real
root A, > k for each k. As in the sufficiency proof of part 1),
¥.5u(C (& Ki)) does not converge for some Xo, u. Since

¥/ (k) =cxp (—an)xo— o exp (~au) * Bput  (41)
in the open-loop system, We.(Ex) = ¥rou() and K is not
robust.
1f (26) fails and r < n — 1, we may adopt the notation (29) and
(30) and observe that b,_,Kc; < 0. Since fast cyclicity, impulse
controllability, and impulse observability guarantee that b,_, # 0
and ¢, # 0, a sequence K = K may be chosen so that b Ki
< 0 for every K. The remaining arguments are the same as in the
necessity part of 1) with b4 = bp-, €1y = &y, and v = 1.0

Theorem 4.4 is somewhat pessimistic in that, in the strictest

v
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theoretical sense, robustness can only be guaranteed when at most
one degree of singularity is present in the plant (4) (rank £ = n ~
1). In physical terms this can be interpreted as meaning that a
static compensator can handle only a first-order unmodeled
dynamic element. In our opinion, this indicates that some basic
assumptions which are as yet not well understood are convention-
ally pluced on system models in engincering practice.

For a mathematical explanation of how nonrobust compensa-
tors may fail to stabilize a system, consider the matrix condition in
part 2) of Thearem 4.4. This condition determines an open affine
half-space in the set $2™ of compensation gains K, Exumination
of the proof of Theorem 4.4 reveals that, for systems which are
fast cyclic, impulse controllable, and impulse observable, a static
compensator results in positive feedback either for all admissible
perturbations simultaneously or for none at all. The half-space of
robust feedback gains is simply the set of all K with the
appropriate sign to guarantee negative feedback for all perturba-
tions of the system (4). The system (6) illustrates this point. The
robust gains are simply those satisfying X < 1. On the other
hand, part 1) of Theorem 4.4 maintains that unless the plant is fast
cyclic, impulse controllable, and impulse observable, the class of
admissible perturbations is so broad that any compensator results
in positive feedback with respect to some perturbation; hence, no
compensator is robust. This is illustrated by (2) and (3).

Another important point to note at this stage is that, although all
definitions and technical arguments until now have heen couched
in terms of sequences, each statement applies equally well to nets
in the various topological spaces. This observation is important,
since the space of distributions D, does not satisfy the first axiom
of countability (see [20}).

To conclude this section we compare our results to those of [S].
Specifically, {5, Theorem 1] shows that, for any system

X=Ax+Bu
y=Cx 42)

and any compensation matrix K, there exists a singular perturba-
tion of (42) of the form (1) which destabilizes the closed-loop
system. (The result of {5] is somewhat more general in that it
applies to all dynamic compensators which are proper but not
strictly proper.) According to Theorem 4.4, if we take such a
perturbation and set ¢ = 0, we obtain a nominal system

I, 0} ._1A4y An B,
(5 o= 2] =[]
}'=[C| Cﬂx (43)

which must either fail to be fast cyclic, impulse controllable, or
impuise observable. For example, setting ¢ = 0 in (3) yields a
system of the form (43) which can be shown to be not fast cyclic.
While the result of {5] illustrates that a specialized class of
parasitics can lead to closed-loop destabilization, our results
characterize the same phenomenon but in the context of a broader
class of perturbations and a larger family of nominal systems. For
example, our Theorem 4.4 applies to systems of the form (43)
with A singular (as long as |SE ~ A| # 0 is satisfied), while [5]
considers only the case of A;; nonsingular. Our result also shows
when destabilization can occur as a result of perturbations to a
given order; the perturbed order required to destabilize the closed-
loop system in [5] is not specified.

V. GENERICITY

We now consider the class of systems (4) for which there exists
a robust compensator K, The scts of impulse controllable and
umpulse observable systems were shown in [13] 1o be dense in the
system space £. The next result characterizes those systems
which are aiso fast cyclic.
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Proposition:

1) £ is fast cyclic iff £ € £7 U £,

E"UL-HN L. N L,isopenin L.

3H LN & N8y, is dense in £°,

Proof:

1) Let (E, A, B, C) be any representative of £. If r = ord £,
the Weicrstrass decomposition (9) shows that rank E = r + rank
Ay But £ is fast cyclic if und only if either r = norrank Ay = n
‘-— r — 1. Hence, £ is fastcyclic iff rank £ = norcank E = n -

2) Let

t=[E,A,B,ClEQ=(L"U LN N LN Lp

and apply the decomposition (9). Then A, is cyclic, and Ker A, C
Im A,. Since £ is impulse controllable and impulse observable.

Im Ap+Im By=Im As+Ker Ar+Im By= "~/
Ker 47 N Ker Cy=Ker Ay N Im A7 Nt Ker Cy=0
s0 ¢ € £ N Ly, (see [14]). It follows that
Q=(L"N L") N & U Lp.

We know from [13] that £,. and £, are both open, so Q is the
finite intersection of open sets.

3) It was shown in [13] that £, N £7-! is dense in £*. Our
result follows immediately, since £, N £, O L. a

Note that part 3) is stated in terms of the singular subspace £,
Since every point in the regular subspace £” is necessarily fast
cyclic, impulse controliable, and impulse observable (see [14])
and since £” is dense in £, density of (£" U £ N N L. N L
in £ is trivial. Part 3) is a much stronger result.

V1. DiscussioN AND CONCLUSIONS

In this section we discuss some of the implications of our theory
and use these to suggest further research, Theorem 4.5 shows that
a generic class of systems can be robustly compensated using
static compensators K. This does not mean, however, that the
complement of the open and dense subset (£” U £") N &, N
£, does not contain interesting systems. On the contrary, it is
easy to show that all systems of the form (4) withr < n — 1 and
Az nonsingular lie outside the generic class described by
Theorem 4.5. Another interesting observation is that even a
system which does lie in the generic set can be trivially augmented
so that it sits outside the generic set in a higher dimensional system
space. For example, the dimension of (4) may be increased simply
by defining a new (scalur-valued) state variable 2 = 0 and noting

N RARnIANa!
y=(C 0] [;‘] . (44)

System (44) is a member of £L(n + 1, m, p). It is easy to show
that (44) is not fast cyclic and, hence, cannot be robustly
compensated. The latter point can be countered by arguing that
only variables of interest should be included in a well-devised
state-space model; therefore, the variable z would never be
present.

There are at least a couple of avenues of research which might
eventually resolve these issues. Dynamic compensation is still
refatively unexplored in the context of singular perturbations, One
promising result is |5, Theorem 2] which suggests that, when
parasitics arc presemt, strictly  proper compensutors are miore
robust than nonstrictly proper ones. Since [5] treats only the single
time-scale case, more work needs to be done to see whether this
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result stands up to a larger class of perturbations. As pointed out
in Section I, the issue of which class of perturbations is
meaningful in a given system analysis is of fundamental impor-
tance, Our main results can in fact be proven under a somewhit
more general definition of system perturbation than the one
provided here (strong convergence), However, preliminary work
suggests that even such a generalization might be too restrictive to
allow a coherent robustness theory to be developed. We intend to
explore these issues more fully in the future,

REFERENCES

{1} P. V. Kokotovic, R. E. O'Malley, and P. Sannuti, *‘Singular
perturbations and order reduction in control theory—An ovetview,"
Automatica, vol. 12, pp. 123-132, 1976.

[2] R. E. O'Malley, Introduction to Singular Perturbations. New
York: Academic, 1974.

[3]1 S. L. Campbell and N, J. Rose, “‘Singular perturbation of autonomous
lincar systems,'* SIAM J. Math. Anal., vol. 10, pp. 542-551, 1979,

[4] H. K. Khalil, **A further note on the robustness of feedback control
methods to modeling errors,'” JEEE Trans. Automat. Contr., vol,
29, pp. 861-862, 1984,

(5] M. Vidyasagar, *‘Robust stabilization of singularly perturbed sys-
tems,’* Syst, Contr. Leut., vol, 5, pp. 413-418, 1985,

[6] -—. Control System Synthesis: A Factorization Approach.
Cambridge, MA: M.L.T. Prcss, 1985,

[7) F. Hoppensteadt, **On systems of ordinary dilferential equations with
several parameters multiplying the derivatives,' J. Differential
Equations, vol. 5, pp. 106-116, 1969.

{8] ——, -Properties of solutions of ordinary differential equations with
small parameters,”” Commun, Pure and Appl. Math., vol. 24, pp.
807-840, 1971.

[9] D. Cobb, **Robust stabilization relative to the unweighted H* norm is
generically unattainable in the presence of singular plant perturba-
liigsn;." 1EEE Trans. Automat. Contr., vol. AC-32, pp. 51-53, Jan,

[10) ——, **Fundamental properties of the manifold of singular and regular
systems,"”’ J. Math. Anal, Appl., vol. 120, pp. 328-353, Nov. 1986.
{t1] —-, “*Global analyticity of a geometric decomposition for lirear
singularly perturbed systems,’* Circuits, Syst., Signal Processing
(Special Issue on Semistate Systems), vol, 5, no. 1, pp. 139-152, 1986.
(12] ——, *‘Descriptor variable and generalizea singularly perturbed

I - 5
~

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 33. NO. 12, DECEMBER 1988

sl%ségms: A geometric approach,”* Ph.D. dissertation, Univ. Iilinois,

{131 . ““Tapological aspects of controllability and observability on the
wanifold of singulor and regular systens,** J, Math, Anal, Appl,, in
Press.

114} . “Controliability, observability, and duality in singular sys-

lfgms.“ IEEE Trans. Automat: Contr.,, vol. AC-29, pp. 1076-1082,

84.

{15] G. C. Verghese, B. C. Levy, ard T. Kailath, A generalized state-
space fur singular systems,”* (EEE Trans. Automat. Contr., vol.
AC-20, pp. BEI-KII, 1981

(16} S. L. Camphell, Singular Systems of Differential Equations. New
York: Pitman, 1980,

117} E. R, Gammucher, Theory of Matrices, Vol. 1. New York:
Chelsea, 1960,

18] F. Brickell and R. S, Clark, Differentiable Manifolds. New York:
Reinhold, 1970.

(19] 1. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol, 1.
New York: Academic, 1964.

{20} 1. Dugundji, Topology. New York: Allyn and Bacon, 1966.

[21) T97%. Ash, Real Analysis and Probability. New York: Academic,

J. Daniel Cobb (M'82) was born in Chicago, IL, in
1953. He received the B.S. degree in electrical
engineering from the [linois Institute of
Technology, Chicago, in 1975 and the M.S. and
Ph.D. degrees in clectrical enginecring from the
University of illinois, Urbana, in 1977 and 1980,
respectively.

From 1977 to 1980 he was a Research Assistant
at the Coordinated Science Laboratory, University
of Hlinois, Urbana. He was then Visiting Assistant
Professor in the Department of Electrical
Engineering, University of Toronto, Toronto, Ontario, Canada. At present he
is with the Deparinient of Electrical and Computer Engineering, University of
Wisconsin, Madison.

Dr. Cobb is presently an Associate Fditor for the IEEE TRANSACTIONS ON
AUTOMATIC CONTROL. He is a member of the American Mathematical
Society. the Society for Industrial and Applicd Mathematics, and the 1EEE
Control Systems Society.,




(2] J. D. Cobb, C. L. DeMarco, "“The Minimal Dimension of Stable Faces
Required to Guarantee Stability of a Matrix Polytope," IEEE Transactions
on Automatic Control, Vol. 34, No. 9, September 1989.




THE MINIMAL DIMENSION OF STABLE FACES REQUIRED

TO GUARANTEE STABILITY OF A MATRIX POLYTOPE!
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Abstract

We consider the problem of determining whether each point in a polytope
of nxn matrices is stable. Our approach is to check stability of certain
faces of the polytope. For n23, we show that stability of each point in every
{(2n-4)-dimensional face guarantees stability of the entire polytope.
Furthermore, we prove that, for any k<€n2, there exists a k-dimensional
polytope containing a strictly unstable point and such that all its

subpolytopes of dimension min{k-1,2n~5} are stable.
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1. Background and Inttodaction

In this paper we consider the problem of ascertaining whether cegtaius -
subsets of RT'™ consist entirely of stable matrices. (Here we take stabiﬂ&ﬁﬁ :

of a matrix to mean that all its eigenvalues are in the open left haif pl&@%ﬁﬁn* -

First we need some definitions. A (convex) polytope ? in a vector space V. iS
the convex hull of any nonempty finite subset of V. The dimension of ? is the

dimension of the affine hull aff(?) of ?. The relative boundary of ? is the

boundary of ? as a subset of the topological space aff(P). A face of ? is any
set of the form MNP, where N is a supporting hyperplane of ?. A vertex of ?
18 a O0-dimensional face. An edge of ? is a l-dimensional face. A subpolytope
of P is the convex hull of any set of vertices af ?. Finally, a k-dimensional
ﬁalf—glane in V is any nonempty set of the form M#=RnS, where R is a closed
half-space, $ is a k-dimensional affine subépace, and S¢R. (Note that this
implies that the affine hull of X is simply S.)

In the robust control literature, considerable interest has beén
generated by the problem of determining whether stability of a polytope :in

either R or RYM can be guaranteed simply by checking stability gf

low-dimensional faces. (Stability of a wvector xeR" means simply that xﬁe

pélyndmial sh+xnst-l+,, . +x; is Hurwitz.) We first note that the casés n=0 and

n=1 are trivial; stability of the vertices always guaranteés stability of the
polytope. Several recent papers consider the case n2. For example,
polynomial polytopes of a particularly simple structure ("interval
polynomials”) were addressed by Kharitonov [1];‘ he showed that only four
specially constructed vertices need be checked. A more récent ‘result‘ of
Bartlett, Hollot, and Lin [2] demonstrates that, for an arbitrary polynomial
polytope checking all edges is sufficient to guarantee stability of ?. With

réspect to polytopes in Rnxn' Fu and Barmish [3] have shown that stability of

S




all 1-dimensional subpulytopes is insufficient to guarantee stability of #.
DeMarco {4] has shown that, for n23, (n-2)-dimensional faces are insufflciéﬂt.‘
but 2n-dimensional faces are sufficient.

In this paper we refine the bounds of [4] and show that stability of -all

m=dimensional faces is sufficient to guarantee stability of P, where

1, n=2

m(n) = 12p-4, n>2

Furthermore, we show that for any n and k2n? there exists a polytope of
dimension k, containing a strictly unstable point (a matrix with an eigenvalue
A satisfying Re 2>0), and such that all its min{k-1,m-1}-dimensional

subpolytopes are stable; hence, in this sense, m is minimal,

2. Sufficiency of m

Throughout our analysis, we will make extensive use of the fact that ;ny
affine, one-to-one map f:Rk —_ an determines an affine isomorphism between RK
and f(Rk). Among other things, this impliés that, for any polytope ?ch. £(P)
is also a polytope of the same dimension as ?; furthermore, f sets up a
one=to-one correspondence between g-dimensional faces of ? and g-dimensional
faces of £(?). In addition, f maps each k-dimensional half-plane in Rk into
another k-dimensional half-plane (e.g., see [5]). Finally, we note that every
polytope is compact and that the set (xeRki!xﬁwSI} is a polytope whose
g-dimensional faces are generated by fixing k-q entries of x at either *1 and
letting the remalning ¢ entries vary independently over {-1,1}.

With these observations in mind, we prove a résult characterizing the

affine structure of the set of unstable points in R




. . nxn
Lemma 2.1 For weach unstable AeR

o a

nxn

half-plane HcR such that 1) AeX and 2) BeM implies B is unstable.

Proof Case [ -- A has a real eigenvalue 2§20: Let T=[v W], whéere v is an

RS
v

eigenvector corresponding to Ao and W is chosen to{{make T nonsiggurﬁf,

n2-n+1 nxn

Clearly, the map f:R - R determined by

iR ¥]a-1
f(R,y.Z)-T[O Z]T

is affine and one-to-one. Let # be the (n2-n+1)-dimensional half-plane

lxn-l'z,—n-lxn-l)

R={f(A,y.2) 2224, yeR «R

Then AeX and every matrix in A is unstable. Since n2-n+12n2-m, we need pqu

select any (n2-m)-dimensional half-plane ¥ satisfying AeXcA.

Case II -- A has a complex éigenvalue pair ag*ife with &>0: Let

T=[v w X]., where v+iw is an eigenvéctor corrésponding to ag+iBg and X -is

chosen to make T nonsingular. Let ¥ be the (n2-2n+4)-dimensional half-plane

';L(T[g ‘z{} T}t U220, YeRT 2 2eR™ P72y
(tr U22ao describes a 4-dimensional half-plane, since tr U=<U,1>.) ¥ contains
only unstable points, since tr U22ag implies U has at least one eigenvalue 2

with Re A2ao. Also, A€M, since our choice of T guarantees that A has

there exists an tné §) dimensioia?




Finally, n2-2n+42n2-m, so the desired HcH exists.

8 .

Next we prove an easy result concerning the interséction of affine sets.

Lemma 2.2 Let V be a p-dimensional Euclidean space, #cV a k-dimensional
half-plane, and ' a q-dimensional affine subspace with k+q>p. Consider any
vector XoeNnl'. There exists a (k+gq-p)-dimensional half-plane ® such that

XoeHcHNT,

proof By definition, #=RnS, where R is a closed half-space and S is a
k-dimensional affine subspace satisfying S¢R. There exists an affine subspace
Scsnr with dim § =k+q-p and xo€S. If ScR, let HCRNS be any (k+q-p)-dimensional

half-space containing Xo. Thén ACRNSNT=HnT. If S¢R, let #=RnS. Then xoeH;

since xqe#nfcR. Also, dim #=k+q-p, since % is nonempty. i

£

We are now in a position to prove our first main result.

Theorem 2.3 Stability of every matrix in every m-diménsional face of ?

guarantees stablility of every matrix in 2.

Proof Our arguments here are similar to those used in [2,Lemma 1]. Suppose Pk

i's,_pr unstable- polytope of dimension k>m. Then there exists an unstable

/
 hatrix AjeP.. From Lemma 2.1, there is a (n2-m)=dimensional half plane #;,

1'{cé‘ﬁsisting entirely of unstable points and containing A;. Since M; |is

unbounded, there exists an Aje#; lying on the boundary of P, and, hence, in

]
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one of s (kU -dimensiona Faces Pyl Tpom Lemiae 2.2, the intereeciion’

R,naff(Px-1) contains a (k-m-1)-dimensional half-plane #; such that AgiMy.

PRPTE R PR

Proceeding inductively, we find that there exists an m-dimensional face Py aﬁd?_" )

a4 point Ax.m€Pn such that Ax., is unstable.

ll n

3. Minimality of m

Qur next task is to show that m is the smallest integer such that

stability of all m-dimensional facés of P guarantees stability of 7. :

Théorem 3.1 For each integer n22 there exists an m-dimensional polytope PcRVD
containing an unstable point and such that all its (m-1)-dimensional faces are
stable.

Proof Case I -- n=2: Consider the affine, one-to-one map

0 x]

f(x)i[_x -1

I
Loy I
e e st

Wl
T

aid the corresponding 1-dimensional polytope ?i{f(x)llxiSI}. ‘Each matrik in ?
“ﬁéé characteristic polynomial A(s)=s?+s+x2; hence, each vertex of ¥ (x=21) 18
- §table, but the point corresponding to Xx=0 is unstable. L o TE

Case Il -- n=3: The 2-dimensional polytope

e 1 -x
?=([-1 0 -y]

x vy =1

has characteristic polynomial A(s)=83+s2+(1+x2+y2)s+1, Each coefficient of




M8) is pusttave, and the corresponding 2:2 Hurwity mitrix ‘s oo it .
principal second-order minor equal to Mz(x’y)=x3~y2. Thus. sach édggj‘hsﬁ
stable, but the matrix corresponding to x=y=0 is unstable.

Case II1 -- n24: Consider the (2n-4)-dimensional polytope

0 1 -x
P=(|-1 0 -yT g[;}i s1)
X y ~I ®

A routfne calculation shows that ? has characteristic polynomial
?(s)=(8+l)n—4A(s). where

-~

A(s)=s4+253+(2+xTx+yTy)32+(2+xTx+yTy)s+1+xTxyTy-(xTy)2

From the Schwartz inequality, it is clear that all coefficients of A afa?r
strictly positive. The corresponding 4x4 Hurwitz matrix has its leading-

principal third-order minor equal to

Ms(x.y)=4xTx+4YTY+4(xTY)2*(xTx-yTYi2

-

Clearly, M,20 with equality if and only if x=y=0. Thus the (2n-5)-dinensional
faces of P are stable, but the point corresponding to x=y=0 is unstable. ;2

It is interesting to note that Theorem 3.1 also implies that the
half-planes considered in Lemma 2.1 are maximal in the sense that tﬁere exists

nxn

" "an unstable matrix A in R such that every half-plane of dimension greater

thgn n?-m containing A must also contain a stable matrix, Indeed, 1if %Eis
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wore not che cas2. the arsuments in Theorem 2.0 could be used to prove taai a

is not minimal.

4. A Stronger Version of the Minimality Theorem

The construction in the proof of Theorem 3.1 {s weak 1n‘three respects:
1) The polytope ? contains only a single marginally unstable matrix (i.e. a
matrix having all eigenvalues 2 satisfying Re A$0 and at least one with
Re A =0). 2} The construction yields only a polytope of dimension m. 3)
Arbitrary subpolytopes are not considered; thus it is not clear that checking
all subpolytopes of dimension, say, m-1 would not guarantee stability. The
minimality proof would be more convincing if it could be extended to give a
family of polytopes, each 1) containing a strictly unstable point (and, hence,
infinitely many unstable points), 2) having arbitrary dimension Kk, énd
3) having all min{k-1.m-1)}-dimensional subpolytopes stable.

Theorem 4.2 shows that such improvements over Theorem 3.1 can be ﬁgée;
Thé proof requires a simple lemma. For any normed linear space V, subset ﬁéi;lifrr,

and point reV consider the distance function

d(r,0)=int?r-ovj
we)

Let conv(Q) denote the convex hull of Q.
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Lemma ! ! suppose OV is convex, >0, and [V is any seét sSuch fhat )

for every rel'. Then d(n,0)<e for every neconv(Qul).

Proof Each neconv(Qul') is of the form n=an;-(1-a)nz, where ae{0.1] and

N1.n2€Qul, There exist w;,w,€Q such that In;-v1<& and !n3-wy <c. Let

w=aw;+(1-a)w;. Then well, and

. w b
et A5 SURE bt rs dne e nrntd e o ]

d(n,Q)sin-0l

i

o fi

=fa(n-0y)+(1-a)(nz2-w2)1

Sajn-wpi+(1-a)in2-wzi 4

L

<&

Theorem 4.2 For any integers n,k with n22 and 1Sk$n2?, there exists a polytope

k
min{k-1.m-1}~-dimensional subpolytope is stable.

P, of dimension k containing a strictly unstable point and such that each A;i

Proof Suppose a marginally unstable polytope §k of dimension k is constructed . 71%

such that all its min{k-1,m~1} subpolytopes are stable. Then, since the set
of stable points in RN g open and the union of all min{k-1,m-1}-dimensional

subpolytopes of ?k

dimension are stable for sufficiently small &, but ?k is strictly unstable.

is compact, the subpolytopes of ?k=§k¥51 of the sameé

Thus, it suffices to construct any k-dimensional unstable ?k with stable

subpolytopes.

z
N
==
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If u-2. inet f(x.y)-i-g _:J where x.y range over R; otherwise, jet
0 1 ~xT
T
f(x'}’)= -1 0 _y
x vy -1
where x.yemn—z. We consider two cases; first, assume k<m. Define

fk:mk — Rnxn according to fk([g].[g]). where the vectors x and y are
partitioned in any way such that [: eﬂk. Since each fk is affine and

one-to-one, the set

Q ={f, (w,2)

MRS

is a k-dimensional polytope. As in the proof of Theorem 3.1, each matrix in
Qk is stable except for the point corresponding to w=z=0. The union of the
(k-1)-dimensional subpolytopes of Qk is compact and nowhere dense in f(Rk):

hence, there exist vectors wo.zoef(Pk) such that

?k=(fk(‘"w° ’ 2"'20)

g[‘;’” <1}

is unstable, but has all its {k-1)-dimensional subpolytopes stable.
Next consider the case konm. The union of the (m-1)-dimensional
subpolytopes of the m-dimensional polytope ? (defined in Theorem 3.1) are

compact and nowhere dense in f(R'); hence, there exist X¢.yo such that

& e T

‘,
& "
I~
e Dol




U=(f(X*Ko.Y‘Yo)

il

has all its (m-1)-dimensional subpolytopes stable, but € is unstable. If n=2,

let

2, 2
_ 1 2
g(x.y.z)—f(x.y)+[o 2 }

Otherwise, define

zl z2 23 . 0 » zn

zn+1 zn+2 Zn+3 e ZZn
gix,y.z)=f(x,y)+ . .

? ? ?2n+1 ?3n-2

.0 0 zn2-3n+7'.'zn2-2n+4‘

ni-m

In each case, zeR Also let gke(x.y,w)=g(x.y.[(s/g)w]). where weﬂk-2n+4

and ¢>0. Note that each gke is affine and one-to-one.

Now consider the k-dimensional polytope

.
o
w -4

If we choose the matrix norm 5Mﬂ=maxgmijt, it follows that for every vertex A

?k;(zks(x.y.w)

T

of ?ke there exists a vertex A of @ such that lA-Aj<e. Furthermore, avery

(m-1)-dimensional subpolytope of ?ke can be expressed as a disjoint finite

union uAu, where each A is the convex hull of m-1 vertices A

1 Any of

?ke' Suppose Al,....Aqea and A ,....Am_llaz let

v

-10-



Q-—-conv{.-‘«1 ..... Aq Aq_! v 'Am-l}' where each "\i iy a vertex of ¢ satjsfyving
Ai-Aia<e. and let [=(Aq+1 ..... Am_l}. From Lemma 4.1, every
Beconv(Al.....Am_l)cconv(ﬂur) satisfies d(B,Q)<e. Hence, for sufficiently

small &, each (m~1)~-dimensional subpolytope of ?ks is stable.

5. Conclusions

Our results demonstrate to what extent the techniques for checking
polytope stability proposed in {2] can be extended to the case of nxn
matrices. We have shown that, without further information describing the
particular structure of a polytope, (2n-4)-dimensional faces must be checked
for stability. Since testing even one such face can be a formidable task when
n 1is large, and since the number of (2n-4)~dimensional faces grows
exponentially with n, more work needs to ﬂe done before a computationally
tractable algorithm can be devised for checking stability. It is our hope,
however, that our work will be useful as an integral part of some future

coherent theory of robust stability.

~-11-
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THE MINIMAL DIMENSION OF STABLE FACES REQUIRED TO GUARANTEE

STABILITY OF A MATRIX POLYTOPE:
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Abstract

We consider the problem of determining whether a
polytope P of nxn matrices is D-stable -- i.e. whether
each point in ? has all its eigenvalues in a given
nonempty. open, convex, conjugate-symmetric subset D
of the complex plane. Our approach is to check
D-stability of certain faces of ?. In particular. for
each D and n we determine the smallest integer m such
that D~-stability of every m-dimensional face
guarantees D-stability of P.

1. Introduction

Let DcC be nonempty, open, convex. and
conjugate-symmetric (symmetric about the real axis).
and define an nxn real matrix M to be D-stable if each
eigenvalue 2 of M satisfies 2AcD: otherwise, M is
D-unstable. We consider the problem of determining

whether certain subsets of R0 consist entirely of
D-stable matrices. To facilitate discussion we hegin
with some definitions.

A (convex) polytope ? in a vector space V is the
convex hull conv(Ql) of any nonempty finite subset GV,
The dimension of P is the dimension of the affine hull
aff(?) of P. A face of P is any set of the form MNP,
where 1 {s a supporting hyperplane of P?. Finally. a
k-dimensional half-plane in V is any nonempty set of
the form M=RnS. where R i3 a closed half -space, S is a

k-dimensional affine subspace. and S¢R. {Note that
this implies that aff(#) is simply S.)
In the robust control literature. considerable

interest has been generated by the problem of
determining whether a family of linear systems can be
shown to consist entirely of D-stable systems by
checking D-stability of certain representative members
of that family. In many cases, such problems can be
reduced to that of determining whether a polytope or

other subset of R" or g0 consists entirely of
D-stable points ([1].([2]. (D-stability of a vector

xeRn means simply that the polynomial sh+xqasn-...-X;
has all its roots in D.) We are primarily interested
in the technique of checking D-stability of lower
dimensional faces of a polytope {n order to guarantee
D-stability of the entire set.

Most “facial" results pertain to continuous-time
(CT) stability -- {.e. where D fs the open left half
complex plane. The seminal result {3] for polynomial
polytopes motivates the approach. In (3] it is shown
that a polynomial polytope of a particular simple
structure {an “interval polynomial”) {is CT stable
whenever four specially constructed vertices are CT
stable. A more recent result [1] demonstrates that,
for an arbitrary polynomial polytope. checking all
edges is sufficlient to guarantee CT stability. With

respect to polytopes in Rn*n' is has been shown (4}
that 1) an arbitrary polytope is CT stable if all
{2n-4)-dimensional faces are CT stable and 2) there
exist CT unstable polytopes such that all

! This work was supported in part by NSF Grant No.
ECS-8612948 and by AFOSR Grant No. AFOSR-88-0087.
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(2n-5) -dimensional faces are CT stable: hence, the
value 2n-4 is minimal. [n this paper we extend the
results of [4] to D-.stability where D may be any
nonempty. open, convex conjugate-symmetric subset of
[ o

We note that for the cases n=0 and n=1 our
problem has a trivial solutfon: D-stability of
vertices guarantees D-stability of the polvtope. To
handle 022 we need to partition the famsly of
stability sets D according to the following two
assumptions.

Assumption A. O is of the form D={se€ja<Re s<b}.
where -»Sa<bs=

Assumption _B: D is a nonempty. open. convex.
conjugate-symmetric set not satisfying Assumption A.

n=2
n>2
and m8 are the

_ 1.
In  addition. we define mA(n)={2n_4. and

mB(n)=2n~2. We intend to show that my
values of m that we seek for cases A and B.

2. Sufficiency of m 8

Throughout our analysis. we will make extensive
use of the fact that any affine. one to-one map

and m

2
f:Rk — R"" determines an affine isomorphism between

Rk and f(Rk). Among other things. this implies that.
k

for any polytope P-R", t{P) is alsno a polytope of the
same dimension as P: furthermore. f sets up &
one-to-gne correspondence brtween the g-dimensional
faces of P and the g-dimensional faces of f(P)., In

addition., f maps each k dimengionul half-plane in Rk
into another k-dimensiota' half-plane (e g see [5])
Finally. we note that every polytope 18 compiact and

that any set of the form (xeﬁkiuxu”Sr). where y>0, is

a polytope whuse g-dimensional fuces are generated by
fixing k-q entries of x at either *y and letting the
remaining q entries vary independently over [-r.7].
with these observations in mind. we prove a
result characterizing the affine structure of the set

of D-unstable points in R

Lemma 2 t 1) If D satisfies Assumption A then ftor

each D-unstable MeR" " there
(nz-mA)-dlmenslonal half-plane " such that a) Mew

and b) NeX# Implies ¥ is D-unstable.
2) If D satisfies Assumption B.

D-unstable Mcﬁnx"

pxists an

then for each
there exists an (n*-mB)-dlmensional
half-plane #RV "
N is D-unstable.

such that a) Me# and b) Y€K implies

e

e
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Pryaf (€ P conto.:s AN unstable A, thete exists
an {n?-2n-i)-dimensional half-plane # consisting
entirely of unstabie poiuts and coutaining A
From dimensionality arguments, such a plane must
intersect a (2n-4)-dimensional face of P. (See
{4] for details.) ~
3. Minimality of m=2n-4

In this section we show that. for every integer

n., there exists a polytope ?‘Rnxn containing an

unstable point and such that all

{2n~5)-dimensional subpolytopes of ¥ are stable.

Hence, we conclude that checking scability of

k-dimensional subpolytopes of %, for any k<2n-4

is, in ygeneral. not sufficient to guarantee
stability of 2.

Congider the polytope
01 -x"
T

Pa({-1 0 -y

‘[;}iusl)
gy -1

A routine cajculation shows that 2 has

characteristic  polynomial  p(s)=(s+1)" %a(s),
where

A(s)-s4+233~(2+xTx~vT9)sa

'(2-xrx-yTy)s*1*xTxyTy-(xTyle

From the Schwartz inequality, it is clear that
all coefficients are strictly positive, The
corresponding 4x4 Hurwitz matrix has its leading
principal 3x3 minor equal to
Mylx, y)=4xTx r4va*4(xTy)2+(xTx-yTy)2

Clearly, u320 with equality iff xsys0. Thus, %
consists entirely of stable pointg, except for
the relative interior point corresponding to
Xny=0, We conclude that checking
(2n-5)-dimensional faces (in this case the entire
boundary of P) is insufficient to guarantee
stability.

Comments 1) The preceding example can be
strengthened by adding I to P, where ¢ |is
sufficiently small. This yields a polytope with
stable {2n-5)-dimensional boundary, but
containing a ball of strictly unstable points.

2) Since the union of all (2n-3)-dimensional
subpolytopes is nowhere dense, shifting the

parameter set '[;]I 21 by an arbitrarily small
-

vector yields an unstable polytope with all
(2n-5)-dimensional subpolytopes stable.

3) The polytope ® described above can be
transformed into a similar example with any given
dismension either by removing parameters or by
using ® as a face of a higher dimensional

“polytope.

Note that the constructions described in 1),
2), and 3) can be carried out simultaneocusly to
given a stronger but algebraically messy version
of the sainimality proof offered above.
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hreges sucn thar stability of Il a-dimenstanecis
subpalytopes ot a  given  nyiyrona  peRPY
Huaranters otability ot P, rurtnerreré. we nacé
demonstrated that checking m 49;::§f:§:3'£§icﬁa.i
always sufficient. This redeces the task o
determining whether a poiytape i stable fn cpar
ot eciding whether several low-dimensional
polytopes are stable.  Qur result has ceftain
theoretical significance: howaver., more work
needs to be done before it can be decided whether
the result will help to reduce che computatiunal
vurden inherent in robust system design.

REFERENCES
{1} V. L. Kharitonov, "Asymptotic Stability of an
Equilibrium Position of a Family of Systems ot
Linear Differential Equations.” Differential 'nye
Uravneniya, Vol. 14, no. 11, 1483-1485. 1978.

{2) A. C. Bartlett, C. V. Hollot. and H. Lin.
"Root Locations of an Entire Polytope of
Polynomials: It Suffices to Check the Edges.,”
Proceedings of the American Control Conference.
1611-1616, 1987,

{3} M. Fu, B. R. Barmish, "Stability of a
Polytope of Matrices: Counterexamples," [EEE
Transactions on Automatic Control. in press.

(4] C. L. DeMarco, "Necessary and Sufficient
Conditions for Stability of Polytopes of Matrices
through Tests of Lower Dimensional! Subsets.”
Proceeding of the Twenty-Fifth Anpual Allertcn
Conference on Communication, Control, and
Computing, 72-~77. 19817.

L MESA
W

P




(4]

J. D. Cobb, "The Minimal Dimension of Stable Faces Required to Guarantee
Stability of A Matrix Polytope: D-Stability," IEEE Transactions on
Automatic Control, May 1990.




THE MINIMAL DIMENSION OF STABLE FACES REQUIRED TO GUARANTEE

STABILITY OF A MATRIX POLYTOPE: D-STABILITY!

J. Daniel Cobb
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Abstract
We consider the problem of determining whether a polytope P of nxn
matrices is D-stable -- j.e. whether each point in P has all its eigenvalues
in a given nonempty, open, convex, conjugate-symmetric subset D of the complex
plane. Qur approach is to check D-stability of certain faces of %. In
particular, for each D and n we determine the smallest integer m such that

D-stability of every m-dimensional face guarantees D-stability of P.

I1This work was supported in part by NSF Grant No. ECS-8612048 and by AFUSR
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1. Introduction

Let Dcl be nonempty. open, convex. and conjugate-symmetric (symmetric
about the real axis), and define an nxn real matrix M to be D-stable if each
eigenvalue A of M satisfies Ae€D; otherwise, M is D-unstable. We consider the
problem of determining whether certain subsets of Rnxn consist entirely of
D-stable matrices. To facilitate discussion we begin with some definitions.

A (convex) polytope ? in a vector space V is the convex hull conv(Q) of
any nonempty finite subset QcV. The dimension of ? is the dimension of the

affine hull aff(?) of P. The relative boundary of ? is the boundary of ® as a

subset of the topological space aff(P). A face of ? is any set of the form
In?, where [l is a supporting hyperplane of ?. Finally, a k-dimensional

half-plane in V is any nonempty set of the form #=RnS, where R is a closed

half-space, S is a k-dimensional affine subspace, and S¢R. (Note that this'

implies that aff(®) is simply S.)

In the robust control 1literature, considerable interest has been
generated by the problem of determining whether a family of linear systems can
be shown to consist entirely of D-stable systems by checking D-stability of
certain representative members of that family. In many cases, such problems
can be reduced to that of determining whether a polytope or other subset of &
or RV consists entirely of D-stable points ([1],[2]. (D-stability of a
vector xeR" means simply that the polynomial sn+x,sn-l+,..+x; has all {ts
roots in D, where x; is the ith entry of x.) We are primarily interested in
the technique of checking D-stability of lower dimensional faces of a polytope
in order to guarantee D-stability of the entire set.

Most "“facial"” results pertain to continuous-time (CT) stability -- i.e.
where D 1is the open left half complex plane. The seminal result [3] for

polynomial polytopes motivates the approach. In {3) it is shown that a

e 27 3 2 ey




polynomial pnlyr.o?e. of a particular simple struaciure {an "{ntetvad
polynomial”) is CT stable whenever four specially construéted vertices are CI
stable. A more recent result [1] demonstrates that, for an anbt.t'v,ii:gy
polynomial polytope, checking all edges is sufficient to guaranteeh._éfi’
stability. Wwith respect to polytopes in Rn-“n' it has been shown [4] that
1) an arbitrary polytope is CT stable if all (2n-4)-dimensional faces are CT
stable and 2) there exist CT unstable polytopes such that all
(2n-5)-dimensional faces are CT stable: hence, the value 2n-4 is minimal. In
this paper we extend the results of ([4] to D-stability where D may be any
nonempty, open, convex, conjugate-symmetric subset of C.

We note that for the cases n=0 and n=1 our problem has a trivial
solutjon: D-stability of vertices guarantees D-stabili,t;;;;l;; polytope. To
handle n22 we need to partition the family of stability sets D according to

the following two assumptions.

Assumption A: D is of the form D=(seCla<Re s <b}, where -«=Sa<bse,

Assumption B: D is a nonempty, open, convex, conjugate-symmetric set not

- A ——
P - = T

satisfying Assumption A. - . -

1, n=2 —ono :
In addition, we define mA(")={2n-4. n>2 and mB(n)—Zn 2. We intend to show
that mA and mB are the values of m that we seek for cases A and B.

2. Sufficiency of m, and my

Throughout our analysis, we will make extensive use of the fact that any

2
affine, one-to-one map t’:Rk —R" determines an affine isomorphism between Rk

and t’(Rk). Among other things, this implies that, for any polytope ?cﬂk. £(P)

is also a polytope of the same dimension as P; furthermore, f sets up a




one to one correspondence between the g-dimensional fades of » ana (?ﬁ$,'A
g-dimensional faces of ((P). In addition, f maps each kndimunsionél
half-plane in RS into another k-dimensional half-plane (e.g. see [5]).
Finally, we note that every polytope is compact and that any set of the form
{xeﬂk‘uxuer}. where ¥>0, is a polytope whose g-dimensional faces are
generated by fixing k-q entries of x at either %y and letting the remaining ¢
éntries vary independently over (-r,7].

With these observations in mind, we prove a result characterizing the

affine structure of the set of D-unstable points in RN

Lemma 2.1 If D satisfies Assumption A (respectively, Assumption B), then for
each D-unstable Memnxn there exists an (ni-mA)—dinensional (respectively,
(n*-mB)-dimensional) half-plane #eRM O such that a) Me® and b) Ne# implies N
i8 D-unstable,
Proof Suppose Assumption A holds. If a=-«,b=«, the statement is vacuously
true; otherwise, we need to consider two cases.

Case I -- M has a real eigenvalue Aq8D: Let T=[v W], where v is an
eigenvector corresponding to A3 and W is chosen to make T nonsingular.

02
and one-to-one. I[f R¢<a, let I3(~-=»,29] and let % be the (n2-n+1)-dimensional

) 2- -
Clearly, the map f:Rn n+1 — Rnxn determined by f(A,y,Z)=T['t y}T 1 is affine

half-plane H=(f(4,y,2)|ae1, yeR" " zef" 1M1y,

If a=-=, then Ag>b 80 we set
I=[{Ag,») and construct R in the same way. In either case, Me® and every
matrix in ¥ is D-unstable. Since n3-n+1?.n2—uA, it remains to select any
(n?-m,)-dimensional half-plane X satisfying MeHcR.

Case II -- M has a complex eigenvalue pair ap*ifp with a(>0: Let
T={u v W], where u+iv is an eigenvector corresponding to ag+iBe and W is

chosen to make T nonsingular. If ag<a, let R be the (n2-2n+4)-dimensional




; « e B D)
half plane R-(‘l‘[x Y]'r Y 2en 2, i 240

0 7 ]H‘Xseao.\'eﬂ'\' ZeR “t. (tr XSfZ2ag describes o
4-dimensional half-plane, since tr X-<X,I>.) R contains only D-unstable
points, since tr X$2ag implies X has at least one eigenvalue A with Re 4 2aq4.
If ag>b, # is defined by tr X22ay, and the same reasoning holds. In either
case, MeX.

Now suppose Assumption B holds. We again consider two cases. Case I --
X has a real eigenvalue 2,#0: Again let T=[v W], where v is an eigenvector
corresponding to Ag. Since D is convex, either (-«,2p]nD=¢ or [Ay,=)nD=¢. In

the former case, let *  be the (n2-n+1)-dimensional half-plane

1xn-1 n-ixn-1

i-('r{g ;]Tﬁl‘lﬂg.yen ,ZeR }. For the latter case, alter the
definition of X by substituting "A2A¢" for "ASA¢". In either case, MeR and
every matrix in X is D-unstable. Since nl-n+1>n3~mB, it remains to select any
(n2-n ) -dimensional half-plane K satisfying MeRCR.

Case II -- M has a complex eigenvalue pair aotiBe#D: Let T=[u v W]‘.
where uriv is an eigenvector correspondinzg to ag+ifs. Since D is convex,
there exists a half-space [lcC such that ag+ifg€il and [inD=¢. Let ¥ be the

{ni-2n+2)-dimensional half-plane

aBx
R={T|-8 a y|T 1|a+1[3¢ﬂ;x,ysmlxn 2, 7eRN"2X02,
002
Clearly, X contains only D-unstable points, and Mex. d

Next we prove an easy result concerning the intersection of affine sets.

Lemma 2.2 Let V be a p-dimensional Euclidean space, #cV a k-dimensional
half-plane, and [ a g-dimensional affine subspace with k+q>p. Consider any
vector xo€Hnl. There exists a (k+q-p)-dimensional half-plane ¥ such that

XQ!.iCﬁn[' .

o




Proof By definition, H=R"S, where R is a closed half-space and 35 15 u
k-dimensional affine subepace satisfying S¢R. There exists an affine subspace
ScSnr with dim S =k+q-p and xo€S. If ScR, let WcRnS pe any (k+q-p) -dimensiona!
half-space containing X¢. Then HCRNSAT=ANT. If §¢R. let §=Rn§” Then xoeﬁ.

since xq&HNIcR. Also, dintﬁf=k+q-p. since ¥ is nonempty.

We are now in a position to prove our first main result.

Theorem 2.3 Under Assumption A (respectively, Assumption B), D-stability of
every matrix in every mA~d1mensiona1 (respectively, mB-dimensional) face of P
guarantees D-stability of every matrix in ?.

Proof Suppose Assumption A holds. Our arguments here are similar to those
used in (2,Lemma t]. I[f Px is a D-unstable polytope of dimension k>mA. there
exigsts a D-unstable matrix M;eP. From Lemma 2.1, there s an
(nz—mA)-dimensional half plane #;, consisting entirely of D-unstable points
and containing M;. Since #; is unbounded, there exists an Ma;e&®, lying on the
boundary of Px and, hence, in one of its (k-1)-dimensional faces Px.;. From
Lemma 2.2, the intersection #H;naff(®Px.;) contains a (k-mA-l)-dimensional
half-plane ¥, such that Mae#,. Proceeding inductively, we find that there
exists an mA-dimensional face P, and a point Mx.m€Pmp such that Mkx.m is

D-unstable.

Under Assumption B, the same proof holds if we replace m, by mg- HH

3. Minimality of m

kﬁand mB

Qur next task is to show that mA and mB are the smallest integers such

that D-stability of all mA—dimensional or m_-dimensional faces of ? guarantees

B
D-stability of ? under Assumptions A or B, respectively. In order to prove




this we need a lemma which may be interpreted as o multivdartable exteps.on ot
L'Hospital's rule. For any kxk matrices Q and R, we use the notation Q>0 aad
R<0 to signify that Q is positive definite and R is negative definite,
respectively.

2

)
Lemma 3.1 Let 0eUcR® with U open, and let e eZ:U -— R” be C2 functions. [n

10
addition, suppose e,(0)=e2(0)=0,

2 2
dey . %eg '.-__Lae =0, dlez <0
ax ax ax? ax?

x=0 x=0 X=0 Xx=0

For every &8>0 there exists an &>0 such that O#lixli<e implies e;(x)<~%|e;(x);.

Proof From [6,p.340], for every Q>0 there exists an &>0 st a that uxn<s

implies
2
ei(x) - e (0) - %%% X - %XT%EE%I X
x=0 X=0_ | . l(_ﬁ_)
T 2'1+6
X" Qx

2

Setting Q = - %ﬁ?f yields
x=0
ey (x)i <& |eg(x)+leQx|
' 2
xTQx T < & (1)
X Qx
and, from (1), ea2(x) < (8-%)xTQx < 0 for x+0. Hence, for x#0,
~ey(x)}| 16
2(:; ” ie'i'(x” 1T 1 XTQ1XT 1 5(-{:35 0
2 Lol - - L ol - - -n | SerE———
i(ez(x)*fzx Qx) - 3% Qx| ez(x)+3x Qx 1] 2 3(373)
T 2
x Qx

Thus, eg(x)<-%|ex(x)lo

Now we can prove our second main result.




[heorem 3.2 Suppose D satisfies Assumption A (respectively, Assumption 8).
For each n there exists an mA dimensional (respectively, mB-d{mensionai)
polytope PR N containing a D-unstable point and such that all
(mA—l)"dimensional {respectively, (mB-l)-dimensional) faces of P are D-stable.

Proof Under Assumption A we need to consider nine cases.

Case I -~ a>-o,b<w,n=2: Consider the affine, one-to-one map
b X
E(x) = |, atb
x =

and the corresponding one-dimensional polytope ?=(f(x)||x|$1}. The point in P
corresponding to X=0 is clearly D-unstable. It suffices to prove that the

characteristic polynomials A+ and A" of f(x)-bl and aI-f(x), respectively, are

Hurwitz for all x#0. This 1is in fact true, since A+(s)=sa+9%25+x2 and
2
A (s)=sz+g(b-a)s+(b;a) +x2 have positive coefficients for x#0.
Case [I -- a>-«,b<»,n=3: Let
b 1 -x
. |"t b -y
f(x'Y) = X .a"‘_b

v 3
[t is sufficient to show that the characteristic polynomials A" and A" of
f(x,y)-bl and al-f(x,y), respectively, are Hurwitz for [3}#0. A
straightforward calculation yields A+(s)=33+9%332+(1+x2+y2)s+§%3 and

2+y2+2(b-a)2)s+9-;--a-(1+2x2+2y2+(b—a)2). Each polynomial

A-(8)=53+%(b-a)sa+(1+x
has positive coefficients for [;]:o. The fact that they are Hurwitz follows
from positivity of the second-order leading principal minors M; = L)%9-(:(2*-312)

and M; = 9%3(4+3x2+3y2+9(b~a)2) of the corresponding 3x3 Hurwitz matrices.

b 1 —xT

Case IIl -- b>-=,a<=,n>3: Let £(x,y) = {-1 b -yT
a+

x vy (3D

where x.y,eRn-z. A tedious calculation shows that A+(s) = (s+9§2)n_43+(s) and




A (s) = (s¢+ b 1)n lA (s). where

A ste(b-a)s3+ (1exTxryTys (222 “)2)32+——(2+x x+y y)sextxy y-(x1y)2- (3«“)2

&
—
(7]
—
]

A (s s +3(b a)s +(1+x X+y y+—-(b a) )s +(b a)(1+-x x+§y y+ (b-a) )s

*XTKYTY (XTY)2+(b a)2(1+2XTK+2y y+(b- 1) )

[

/]

—
[}

From the Schwartz inequality, K+ and 3- have positive coefficients when [;]*0.
Furthermore, the third-order leading principal minors of the corresponding 4x4

A A
Hurwitz matrices of A and A are

M5(e) = (%1222 Ty e (Tx-y T 2ra el

M(s) = (2+3¢ xs2y Ty s (x -y Ty 24 (xTy)?) (b-a)?

21 GSXTX*SS

183 Tx 82y Ty) (b-2) 482 (b-a)®

=
Since M; and M; are positive, A" and A~ and, hence, A" and A” are Hurwitz.
The remaining six cases are handled similarly by choosing all eigenvalues
in the interior of D, except for one or two on the boundary of °'D. For
example, for a>-«, b=w, n>3, set

a 1 -xT
T
f(x,y) = |-1 a ~y
X y (a+1)l
Adopting Assumption B, suppose D is not of the form (s|a<Re 8 <b}. Since D is

convex, there exists a real ag€D such that the line L={ao+iB|B¢R) satisfies
LeD. Since D is conjugate symmetric and open, there exists a So>0 such that

aptife are boundary points of D, but agtif€D when [B|<B¢. Furthermore, there

Ll




exists a4 ¢>0 such that agtdeb. Again invoking convexity, the open diamond
Eanint conv{aotdBe.aotiBo} is contained in D. To simplify the problem,
consider the open diamond d6=§%(36~ao)=int conv{*i,*5}. We need only

construct a single polytope ? containing a matrix with a pair of eigenvalues
at *I and with all mB-dimensional faces consisting of matrices with all
eigenvalues in d6: then BoP+apl would then satisfy the desired properties with

respect to a

5
Consider the (n2-2n+2)-dimensional polytope
w o 1l+x yT w
P = (|- . T X

Pa {|-1+x ~w 2z v S ¢}
y z 0 z

®

where y,chn-a. Clearly, P, has a D-unstable point M at w=x=0.y=z=0. We will
show that for sufficiently small &, every pint in ?e except M is D-stable.
Hence, ?=?5 satisfies the desired properties.

Case I -- n=2: Each point in ?e has characteristic polynomial

2 2_2,1/2

A(w.x,s)=sa+1-w2-x and hence has eigenvalues *i(1l-w -X) Let

2
e<((1:f) )1/2‘

Case Il -- n=3: Each point in ?5 has characteristic polynomial

A(W,X,¥.2,8) = 8o+ (1-w-xP-y2-2°)s-(w(y®-2°) +axyz)

Re A(w,X,v,z,a+if)

Let g(w.x,y,z,a,8) = [Im AW X.Y.2 a+iﬁ)}' It {s easy to see that g is a

polynomial function and, hence, analytic. A straightforward calculation shows

sam|foy * [5 -]

OO0 00CO0




Thus, from the mplicit function theorem, there exists a4 unigue analytice

function h:lj == R2 such that h(0)=[g] and g(w,X,v,2.h{w,X,v.2))=0 for avery

[wxy z]TEU.
Next, let [::]=h—[?]. A tedious computation shows
o8 1 . __288 | ., __afit_ -0 _Jf_s.z__ - 1
3(w,X,vy.2) 0 d(w,X,y,2) 0 a(w.x.y.z)2 0 a(w,x,y.z)2 0
0 0 0 0
0 0 0 0
0 0 0 0

From Lemma 3.1, there exists an &>0 such that eg(w.x.y.z)<-%se1(w.x,y,z)

T
whenever O#ii[w x v z] lI<e. Since e; and e, are continuous, we may also assume

h2
h;(w,x.y.z)<1—%ah1(w,x.y.z)l, |ha(w,x,v,2){<1, and |h;{w,X,y,2)-1]<1 for all

reji<1; i=1,2. Returning to h=[h‘], it follows that

(wxy z]Tﬁo. Hence, heda.

Case III -- n>3: We have

A{w.x,y,2,8) = s4+(l-wa-xa-xTx—yTy)sz-(wyTy-2xyTz-szz)s+yTszz~(yTz)2

Re A(w,Xx,y,z,a+iB)

Im A(w,x.y.z.a+iﬁ)]’ Again, g is a polynomial function:

Let g(w,x,v,2,a,8) = [

in this case

og - [0 ~2]
a(a,B)|fo 2 0
0
0
0
0
1
Th 2n-2 . 2 0
us there exists an open UcR with OeU and h:U — R~ such that h(0)=[1]

and g(w,x,vy,2,h(w,x,v,2))=0 for every {w x vy z]TeU. Let [e‘]=h-[°]. Then

es 1
oep | . __%e | _, ___f.e_x__ =0 _.....9.321__ = -1
3(w.x,y,2) 0 3(w.x,y,z) 0 a(w.x.y.z)2 0 a(w,x.y,z)2 0
0 0 0 0
0 0 0 0
0 1] 0 0

-10-




Applying Lemma 3.1 as in Case [I. it follows that h(w.x.y.z;ena for every

lwxy z]rﬂo.

Note that Theorem 3.2 also implies that the half-planes constructed in
Lemma 2.1 are maximal in the sense that there exists a D-unstable matrix M in

nxn
R

such that every half-plane containing M of dimension greater than nz-mA
or n*-mB must also contain a D-unstable matrix. Indeed, if this were not the

and m_ are

case, the arguments in Theorem 3.2 could be used to prove that mA B

not minimal.

4. Conclusions

Our results demonstrate to what extent the techniques for checking
polytope stability proposed in [1] and [3] can be extended to the case of nxn
matrices. We have shown that. without further information describing the
particular structure of a polytope, either {(2n-4)-dimensional or
(2n-2)-dimensional faces need to be checked for D-stability, depending on the
structure of D. Since testing even one such face can be a formidable task
when n is large, and since the number of (2n-4)-dimensional and
(2n-2)-dimensional faces grow exponentially with n, more work ieeds to be done
before a computationally tractable algorithm can be devised for checking
D-stability. [t is our hope, however, that our work will be useful as an

integral part of some future coherent theory of robust stability.
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Abstract

[n this paper we present a theory which characterizes LTI state-space
realizations of perturbed rational transfer function matrices. Our approach
is to model system perturbations as sequences in the space of rational
matrices. First, we give a definition of convergence in the space of rational
matrices which is motivated by the kinds of parameter uncertainties occurring
in many robust control problems. A realization theory is then established
under the constraint that the realization of any convergent seguence of
rational matrices should also be convergent. Next, we consider the issue of
minimality of realizations and propose a method for calculating the dimension
of a minimal realization of a given transfer matrix sequence. Finally,
necessary and sufficient conditions are discussed under which a sequence of
state-space systems is a minimal realization and under which minimal
realizations of the same transfer function sequence are state-space
equivalent. Relationships with standard algebraic system theoretic results
are discussed.

IThis work was supported by AFOSR Grant No. AFOSR-88-0087.



1. [Iotrodustion

The theory of state-space realizations for strictly proper rational
matvrices has been thoroughly studied (e.g. see [1i8}). More rocently.
techniques for handling improper transfer matrices have been devisod (see
[14]v. In this paper we extend those ideas to the perturbational case -- i.e.
where a system is described by a convergent sequence of rational matrices
{possibly improper). A realization 1is then a sequence of (generalized)
state-space systems. The problem is made nontrivial by imposing the
constraint that the matrix entries of theirealization sequence should also
converge.

Part of our motivation for this problem comes from the study of robust
control problems -- specifically from those dealing with order uncertainty and
singular perturbations. For example, the robustness problems addressed in
11]-[3) are based on singularly perturbed system models. Physical systems are
invariably subject to some variations in parameters, often resulting in
changes in model order. It is desirable, therefore, to design compensators
which meet performance criteria independent of system perturbations. Many
robust control theories (e.g. [4]) emphasize input-output performance
characteristics. Our intention is to develop some fundamental tools for
examining robustness problems associated with a system's internal structural
properties,

One way to approach this problem might be through the application of
algebraic system theory (see,e.g.,{17]). In this setting, the transfer
function sequence is viewed as a rational function over the ring c of
convergent real sequences using pointwise operations. Unfortunately. we will
see that existing results in algebraic realization theory apply to our case

only marginally. This is due to three key facts: 1) The ring c is not an




integral domatn 2) Most results in algebraic rvealization theory deal only
with the case of proper transfer functions. 3) An abstract version of the
Weierstrass decomposition for matrix pencils over a ring does not yet exist.
Nevertheless, our feeling is that the properties of sequences ol transfer
functions are sutficiently tmportant from the point of view of robust control
theory that they deserve separate treatment, not only for the sake of
mimicking standard results from the algebraic theory, but also in order to
obtain deeper insight into the specific structure of realizations over this
particular ving.

From an analytic perspective. considerable work dealing with
perturbations of rational matrices has appeared {e.g., [4].[(71-(12]). In
these papers various rational matrix topologies have been proposed, motivated
by a wvariety of control problems. The closest of these to our work are
[10}-[12), where a singular perturbation theory for transfer functions is
developed and a specific form of realization is given. However, [10]-[12] do
not explicitly address those problems dealing with the existence of
realizations in general and, in particular, the minimal realization of
perturbed systems. In {4] rational matrix convergence is characterized in
terms of the "graph metric” which is used to address certain problems in local
simultaneous stabilization. It is easy to show that the graph metric induces a
topology which is very different from that corresponding to simple system
parameter convergence. The work of [7] and ([9] also treats the problem of
topologizing the set of rational matrices and is closely related to vours, but
again does not examine the realization problem. Our work is motivated solely
by realization and rqbustness issues; our constructions are designed to vield
the simplest definition of convergence corresponding to convergence of sysiem

parameters.




we are mainly concerned with the Interplay between two types of LI

system representations. First, let R(s) be the set of all rational Cunctions '

&

. ”

over R, and let R(s)rm be the set of rxm matrices over Ris). Next. considetr

{generalized) state-space systems

Ex

Ax + Bu (1)

y = CX.
where E and A are nxn real matrices satisfying the standavd regulavity
assumption det(sE-A)20. B is nxm, € is rxn, and E may be singular. For the

sake of brevity, we identify the system (1) with the matrix 4-tuple

n{2n-m=r)

o=(E,A.B.C)eR The transfer matrix of (1) is

Cradj(sE-A)+B
det(SE-A)

Throughout the paper we assume that the values of m and r are fixed: we

H(s) = C(sE-A) B = e R(s)™. (2)

consider n to be a variable.

Definition 1.1 1) A state-space system geRM(Nmer)

is said to have dimension

n. In this case, we write dimo=n.

2) If a rational matr™: H is of the form (2), we say that (E,A,B.C) is a
realization of H.

With regard to (1) and (2), a (nonperturbational) realization theory
already appears in [14]. We now summarize the main results of this theory.
Theorem 1.2 {14]

1) Every rational matrix has a realization.
2) The minimal dimension over all realizations of H, denoted u(+), is
1 1
MiH(s)) = v(Hs(s)) + u(st(s)).

where v(-+) is MacMillan degree, and Hs and H. are the unique strictly

£

proper rational matrix and polynomial matrix, respectively, satisfying

H=Hs+Hf.

I




3) A {-tuple ¢ is a minimal rvealization of some rational matrix H if aund
only it o is controllable and observable (as defined in [8]).
4) If ol=(El.A1.Bl.C1) and 02=(52.A2.82.Cz) are minimal realizations of the
same rational matrix, there exist nonsingular matrices M and N such that
VE N “MA_N. MB . R
52 Mhlx. A2 MA1V B2 \18l and c2 Ll&
The results of our present work may be considered to be a generalization of
Theorem 1.2 to the case of rational matrix sequences (Hk}.
In Section 2 we will choose a natural definition for convergence of
rational matrices. Working from this definition, we will consider sequences
n(2n+m+r)

Hk-H in R(s)rm and attempt to characterize those sequences {ok} in R

such that 1) “k converges to some o in the matrix sense, 2) ak is a
realization of Hk for sufficiently large k. and 3) ¢ is a realization of H.
We view this approach as a way of modeling the possible perturbations in the
internal structure of a system corresponding to a given perturbation in the
input-output description {Hk}.

In our realization theory, we will see that Theorem 1.2, part 1) remains
true {Section 5). Corresponding to the expression for w in part 2), in
Section 6 we will define and give an explicit expression for a degree function
which équals the dimension of all "minimal realizations" of a sequence of
transfer matrices. It will be shown that properties 3) and 4)_do not hold as
stated for sequences; however. we will discuss important special cases where
similar statements do hold. In Sections 5 and 6 we will also discuss the
connections between our work and the standard algebraic realization theory

(see [17]).




Convergence_in the Space of Rational Matrices

We first consider the problem of defining a topology onh R(s) and later on
R(s)™™. Convergence in R(s) will be defined in the most natural way such that
small perturbations in MR{s) correspond to small perturhations in the
coefficients of numerator and denominator of the rational function. To begin.
we must define convergence in the set Rfs] of all polynomials over iR. Suppnse

Pk:k=1.2...f and P are polynomials in R{s].

Jefinition 2.1 We say Pk converges to P if there exists an integer q<= such

that deg Pksq; k=1.2...., deg P<q, and aik-ﬂai:i=o.....q. where
2 - qA- 200 3 . =
Pk(s) aqks alks + a0k. k=1.2,...
) = a_. ... . .
P(s) = aqs as a,.

Remarks
1) If we regard Pkem[s]: k=1,2,--- as functions over L, we might be tempted

to define Pk-P when lim Pk(s)=P(s) for any se€f. But we notice that in
K~

this definition, deg P may not be bounded. For example, let

k
Pk(s)=Eésk*1. This observation brings us to a crossroads in the theory:
If we were to allow convergent polynomial sequences to have unbounded
degree, the same would be true for sequences of rational functions. This
would result in an undesirable situation where state-space realizations
could have unbounded dimension. Hence, we {nsist on bounded degree based
both on physical intuition and on a desire for mathematical elegance.

2) Definition 2.1 is equivalent to the following two conditions:
a) {deg Pklk=1.2.~--} is bounded.

b) lim Pk(s)=P(s) for every s € €.
K-

Indeed, necessity of a) and b) is obvious. On the other hand, if {Pk}

satisfies a), Pk(s) and P(s) can be written as in Definition 2.1. Choose




3)

q-1 distinct complex numbers (slf "'Sq~l)‘ Then. from b),

ng—o\/ﬁ
where
. e q Fa . A
bl bl 1 aqk dq
sI .oi s 1 : :
2 2 .
v=|°© , B O SRR PO T S A B
. . . “1k 1
L
Sg-1" Sqer Aok -

We know that the Vandermonde matrix V satisfies det V#0 as long as
si¢sj.i#j: therefore V-1 exists. and gk-ag as ke,
We can define a topology on R{s] which is consistent with our notion of

convergence in Definition 2.1. To do so, identify every element in R[s]

I3 : m .
with an element in R according to

m
pms . pls po — (po.pl.---.pm,O.O.O.--‘).~
and let
“ "' e b 0
Ry = ((pg.pyuotvup 10,0, )eR| p eR; 1=0,1.2,---,m}.
Then
[- ]
R= UR
k=1 X

is the set of all polynomials. On %k' we take identification topology
|7

(e.g.. see [19,p.120]) with respect to the bijections fk:R‘—‘?k defined

by

fk(al.a a) = (al.a 0,:°9).

2'.“'k 2"‘.' k'

That is, a set

U = ((a1.~-'.a 0.°+})| (al.'o'.ak)eV}

k'
is open in Rk if and only if V is open in mk On R we impose the
inductive limit topology [19.p.420] with respect to the ﬂk -- i.e. we

impose on R the finest topology which makes the natural imbeddings ﬂkcﬁ




continuous. It is routine to prove that Pk—uP in the sonse of

Definition 2.1 if and only if P, converges to P in R.

k
4} [t is shown in [6,Lemma 4.3) that, if (Pk} is convergent in Rfs]. then
~ "\ : . t " R . R . HET

there exist convergent real sequences {aik} (Bxk} and {rk} with aik-0

and lim rkro. such that

P ls) = rkl'if(aiks~1)];[(5~8ik)- (3)
In particular, if the roots of Pk are bounded. then deg!ﬁ(= deg lim Pk'
In order to define convergence in R(s), we adopt a standard quotient
space construction over R{s]x(R[s]-{0}) (e.g.. see [18], p.136) and identify
each rational function with a unique equivalence class under the relation
(a.b)=(c,d) < ad=bc.
We use the expression a/b to denote both a rational function as well as its
corresponding equivalence class in R{s]x(R[s]-{0}). Note that a similar
construction may be employed in identifying rational matrices N/deer(s) with
squivalence classes of pairs (N.d)eR{s]rmx(R[sl-{O}).
Adopting ordinary quotient set topology on R(s). we arrive at the
following definition.
Definition 2.2 Suppose hk:k =1,2,..., and h are in R(s). We say bk_gpnvergeg

to h in R(s). if there exist n_—wn and d,—d in R{s]. with d

K K .d#0, such that

k
nk/dk=hk:k=l.2,.... and nsd=h,
Along similar lines, we now give three alternative definitions for

convergence in R(S)rm.

Definition 2.3 Suppose Hk:k =1.2,...., and H are rxm rational matrices with
: . . rm

components hijk and hijm respectively. We say Hl converges to H in R(s) if

hijk_qhij in R(s) as k=,



Definition 2 3' Suppose Hk:k =1.2,+++ and H are rxm rational matrices. We

say HkAconverges to H in R(s)vm if there exist Nk"*N in R[slrm and dk—~d in
Ris] such that Nk/dk=Hk:k =1,2,.... and Nsd=H. {Here we assume product
topology on m[slrm and that the quotient space constructions above are applied

componentwise on R[slrmX(m[sJ-(O}).)

Definition 2.3'' We say Hl converges to H in R(s)™ if there exist Nk—»N in
2
R[s]rm and Dk—~D in R[s]m with Dk and D nonsingular such that
-1_ e=1 D " -1
Nka —Hk.k-l.h‘... and ND " -H.
Remarks

1) It is easy to show that Definitions 2.3, 2.3' and 2.3'' are equivalent.
A fourth alternative definition is the same as 2.3'' except using left
instead of right factorizations.

2) Note that a sequence which converges in.the sense »~f Definition 2.3 also

converges in identification topology with respect to the map

RV B )™ Gefined by
) _ CeadjisE -A)B
RIE.A/B.C) = mrr—m—
n{2nerm+r)

where (E,A,B,C)eR The construction of the topology on R(s)rm
shows that # is continuous.

3) If Hk—~H and Gk-qs, then Hk+Gk—»H+G and Hka-HG: more gencrally, lR(s)Pm
is a topological ring with respect to identification topology on R(s) and
the corresponding product topology on R(s)rm. In particular. relative
topology on the subgroup of polynomial matrices R[S]rm is the same as
product topology with respect to Definition 2.1. Note that R[s]rm is
closed in R(s)rm.

We will show in Section 5 that our definition of convergence is the

"right” definition for the realization problem, since a sequence in R(s)rm

converges in our sense if and only if it admits a convergent sequence of




state-space realizations. One view of the results of this paper is that they

characterize local properties of the map X.

3. ._Time-Scale Decomposition of Transfer Matrix Sequences

Clearly. any rational matrix H can be uniquely expressed as H=HS~Hf.

where HS is strictly proper and Hf is a polynomial matrix. We now generalize

the decomposition to the sequential case: this must be carried out in a way
that preserves convergence.

Definition 3.1 1) We say a convergent sequence {H in lR(s)rm is a

i

slow sequence, if Hk is strictly proper for every k and there exists a bounded

region AcC such that all poles of each Hk lie in A.
2) A convergent sequence {Hk) is called a fast sequence if for every

M<» there exists a K<« such that k>K implies that each pole p of Hk satisfies

p >M (all poles tend to infinity).

Remarks

8] The set of all slow sequences in lR(s)rm forms a proper subspace of the
real vector space of all convergent sequences in R(s)rm. The same
statement holds for fast sequences.

2) Any slow sequence can be expressed as Hsk = N, /d, where d, is convergent

k' 'k k

<deg dk' where deg N =max{deg ni
i,j
polynomial matrix N. Thus deg IUnNk<deg lim dk' This shows that the

and monic for every k and deg N j} for any

k

limit of every slow sequence is strictly proper.

[

Since the limit of any fast sequence can have no finite poles, such a
limit must be a polynomial matrix.

1) Every convergent sequence of polynomial matrices is a fast sequence.



3) [f a sequence is both slow and fast., it must be strictly and have no
poles whatsoever for large k: hence. the sequence must be jdentically
zero for large k.

6) A sequence of matrices {Hk} is slow (fast) if and only if each component
sequence (hijk} is slow (fast).

Definition 3.2 1) We say H =Hsk-H is a time-scale decomposition of (H

k £k

when {Hsk} and {ka} are slow and fast sequences, respectively.

K’

2) In a time-scale decomposition, (Hsk} and {ka} are called the slow
part and the fast part of (Hk}.

Note that, from remarks 2) and 3) above, if uk;Hsk'H‘k is a time-scale
decomposition of {Hk}. then Hsk—-oHS and ka—nﬂf. where Hs and Hf are the

strictly proper part and the polynomial part of H=lim H Theorem 3.3 tells

K
us that every convergent sequence {Hk) has an essentially unique time-scale

decomposition.

Theorem 3.3 1) For every convergent sequence (Hk} in R(s)rm~ there exist a

slow sequence {Hsk} and a fast sequence (ka} such that H =Hs ~H for every

k sk 'fk

k.
2) 1If {ﬁsk} and (ﬁfk} are slow and fast sequences, respectively, and

A ~ .
H for every k, then H =Hsk and ka=ﬂfk for sufficiently iarge k.

=, -f
K sk fk sk

Proof 1) We need only treat the case r=m=1: the multivariable case can then

he handled componentwise. If h,—heR(s), we can find n -—n and dk-ad. with

k k
nk/dk=hk and n/d=h. Since dk-ad. from (3) we can write dk=rkdskdfk' where
I M1 .
dsk‘s) = § by_l'kb . b0k
=g Yo Rt S P
dfk(s) = dUkS du-l.ks A 48 1,
with each {bik} convergent, rk—~r=0. and aik—*o as k—xe. Let
Y = N .
nk(s) zpkb “e zlks + ZOk'

10




and ltet q=max{v.p-u}. We will show that there exist convergent pulynomial
sequences

n = X S LA

sk u 1,k s - X

0k
. q-1 v .
Meg T Vg-1.k° T VS T Yok

such that n_ d -n

k sk dsk+nfk dfk' Equivalently, we need to show that

"Mk~ Pedar) * Mk (4)
Note that equation (4) may be written in matrix form
Yk k] % i
= 7. {S)
4 A y K
T2k T2k‘ Yk
where
1 .
. b
a1k . L0k
c 1 b
[ 1k . | 1k l 1k| _ v ’
T 'k "'k
Yok YWk Pak H-lk
1 L]
duk . . ll.l‘l.k
0 ¢ - 0
T
“ok Yok | Ok
< = c Ve T z, = aE
. . z
xu~1.k yq—l.k 3k

with Alk' Aak' %lk' %Zk, and zk having dimensions uxu, qxu. WXq, qxq, and

(u+q)x1, respectively. Also note that Alk—ﬂrlu. sz—*rIU-M. where M 1s
nilpotent and upper triangular, and Azk-ﬂo as k==, Hence, there exists a K<«

such that (5) has a unique solution when k>K. For k<K. let hS he any

k
strictly proper rational function and let hszhk—hsk'

2) We have Hsk-ka=Hsk+H for sufficiently large k. Hence,

fk

oo -H  =H. -H
sk sk fk " fk’
But the left side of (6) is slow, and the right side is fast. Hence. both

(6)

sides are identically zerv for large k. ‘

11




o conclude rhis section., we note that a time scale decomposition of any

Al . ‘l 'y '~
k"bk K Ak) Bk. Jhere ‘(Ek.Ak. k'Lk
and det(s-lim Ek 4inlAk)£0. can be achieved by

invoking the perturbational form of the classical Weierstrass decomposilion

transfer matrix sequence of the form H (sE ) )}

. n(2n+m=-r
i1s convergent in R ( )

for matrix pencils as developed in {7]. Indeed. from [7.p.147]. thore exist
convergent nonsingular matrix sequences (Mk} and {Nk}f with lin\Mk and lim Nk

nonsingular. such that

I 0 Ask 0
MkEka = [0 \ ]. MkAka = [ . 1]‘ (7)
£k
where lhnAfk is nilpotent. Let
B .
[:k} =B (6 Col = €N (8)
fk
Then
H(s) = C_ (sI-A_ ) "B = C, (sA, -1) 'B,,. (9)
k sk sk sk fk " fk fk
From Definition 3.1 it is clear that
Hy (8] = C (sI-A )78 (10)
and
Hy (S) = Co (AL ~D) B (11)
are slow and fast sequences, respectively. Hence. (9) is a time-scale

decomposition of (Hk}.

4. The Characteristic Polynomial Sequence

In this section we investigate several useful properties of the sequence
of characteristic polynomials corresponding to a convergent sequence (Hk} in

Lm. We first extend the conventional definition of the characteristic

R(s)
polynomial to improper transfer matrices. Recall that the characteristic
polynomial A of a strictly proper rational matrix Hs is defined as the least

commoft monic denominator of all minors of Hs.

12




Definition 11 It H is a rational matrix with H=MS~Hf for some strictly
proper Hs and polynomial matrix Hf. the characteristic polynomial A of H is
defined as the characteristic polynomial of Hq.

Consider the sequence of characteristin polynomials {Ak) corresponding to

{H, }. Since { d it follows that A, divides dmxn{r.m} for e

k k Nk k’ k K ach k: thus.

boundedness of {deg d, } ensures boundedness of {deg Ak}. Let n=TTH{deg Ak}.

k
and note that deg M(Sn for sufficiently large k. For all such k, Ak can thus
be .iquely identified with a point <Ak> in the real projective space P (seen.
e.g.. [20]) according to
i -1 _ n+1
s a8 R (0.....0.1.ai“1.....a0) € R .

In fact. there is a one-to-one correspondence between P7 and the set of monic
polynomials A with deg A<y, These observations lead to the following
definition.

Definition 4.2 Let {Hk} be any convergent sequence in R(s)rm. and let Ak be

Lthe characteristic polynomial of Hk. Set
f'\'Ak> . deg Ak <y
Pk = .
<1>, deg Ak>n
The sequence {pk) is called the characteristic polynomial (CP) of (Hk}.
[t is easy to show that {pk} converges if and only if there exists a real
sequence (7k} such that {rkAk} converges to a non-zero limit AeR[s]. [n this
case, linlpk=<A>. We now present several pathological sjtuations that can

arise in dealing with the CP.
Example 4.3
1) The following example illustrates that when {Hk) is convergent, the

corresponding CP may not converge. Consider the sequence

13



2)

3)

e s=2)

. K even
{(s+1})(s- 9°—)
Hk(S) =
k odd
Lis 1)(sr3+—)
i
and let H(s)=;jT We may write Hk \k K’ where Nk=(s~2)(s-3) «nd
(S’l)(S“Z“‘)(Sr3). k even
k
dk = 1 .
(S~-1)(s+2)(s~‘3---§). k odd
Thus Hk—aﬂ. but
(s»l)(s~2*l). k even
k
Ak(s) - 1 .
(s"l)(s~3~E). k odd

Clearly, {pk} is not convergent. Note, however, that {Hk> can be divided

1)

-Hgk_1 and

into two subseguences with convergent CP's according to Hi

(21
H oSl

In some cases, {pk} may converge even though {Ak} does not. Consider the
rational sequence

TS
(§3~1)(S*2)

[n this case, {Hk) has CP determined by Ak(s)=(s&k)(s+2). hut {pk}
converges, since

1 1. . .

Ak(s) = E(s kK)(s+2) - 5-2.

Finally. we note that convergence of {or even {Ak}) does not

(o}
guarantee that lim Ak is the characteristic polynomial of lim Hk‘ For
example, let

$+2

H (s) = -——-———-—-1—-
(s-l)(s~2+E~)

K
Then

Ak(s) : (S*l)(s+2vé) - (s-1)(s-2).

14




But
H, (s) L
S —  w——
k'® s-1
Next we examine some basic properties of the CP with respect to the
time-scale decomposition. First we aneed a simple result for individual
systems.

Lemma 4.4 Suppose H=H1-H9. where H1 and H, have no common poles, and let ),

2
Al' and A2 be the characteristic polynomials of H. Hl' and Ha. respectively

Then A=A132.

Proof From the definition of the CP we can assume without loss of generality

that H1 and H2 are strictly proper. Suppose (Al’Bl'Cl) and (Aa.Ba,Cz) are
minimal realizations of HI and HQ: then \i(s)=det(s[-Ai). If we let
A1 0 B1
A= . B = 8 | C = [C1 C2J.
0 A 2

then (A,B,C) is a minimal vealization of H with CP
Als) = det(sI—Al)det(sI-Aa).
In particular, for any time-scale decomposition. Lemma 4.4 implies that.
when k is sufficiently large, we have

A (12)

k - Bskbex
are the characteristic polynomials of Hk' Hsk' and ka.

where A A, . and Af

k’ Tsk

respectively.

k

LEMEI_‘LQ Let Hk=HSk+ka

1) If As

be a time-scale decomposition.

is the characteristic polynomial of Hs and AeR[s] is monic,

k k
then <Ask>—a<A> if and only if Ask—*A.
2) If {pfk) is the CP of ka. then pfk—~<1>.

3) The CP of (Hk} is convergent if and only if the CP of {Hsk} is

convergent. When the two CP's converge, their limits coincide.

15



e

Proof 1) Suftficiency is obvious. To show necessity. observe that there must
exist a real sequence (rk) such that rkAsk—ﬂA and that {Ask} has bounded

roots. From (3), {rk} converges. Since Ask and ) are monic. rkEI

2) We have ofk=<Afk>. where

?(s+li

H is not a polynomial matrix.

k' Heg

Seg °

1, ka is a polynomial matrix.

Here the lik satisfy the property that, for every M<«, there exists a K<~ such
that 'zik >M for each i and each k>K. LlLet
H—l. H,, is not a polynomial matrix.
JA, fk
iik
Tk
1, H is a polynomial matrix.

fk

Then rkdfk““l in Rfs].

3) The result follows immediately from (12) and part 2).

The final result of this section focuses on the observation made in
Example 4.3. part 1), that the CP of a sequence (Hk} in er(s) which is not
convergent can sometimes be decomposed into convergent subsequences.. We can
in fact demonstrate that a finite decomposition of this sort can always be
achieved.
Theorem 4.6 If Hk—~H, then {pk} has finitely many limit points.
Pronf From Lemma 4.5, part 3), we need only consider the case where (Hk} is a
slow sequence. Let H =N ,/d, and H=N/d. From the definition of the

k k' 'k

characteristic polynomial, A min{r.m}

k k

so0 the unique monic representative of each limit point

divides d for each k. But

gin{r,m}_ﬂdmin(r,m}'
of (pk} must divide d

d

mn{r.m}  rhe result then follows from the fact that any

polynomial over R has finitely many monic divisors.

~e
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Corollary 4 7 it Hk—4H. then there exisl finitely many strictly increasing
sequences {kl}:i=1.....n of positive integers such that

S

1) {k;|i=1.2....'n;j=1.2.. b= {1.2.3.... 1.
2) (hljst2 1N (K1{J=1.2....) = o when ptq.

3) each (H i} has convergent CP.

k'
J
Proof From Theorem 4.6, there are only finitely many limit points

pl,....pnePn of {pk}. Since P" is a compact Hausdorft space, each open subset

U of Pn satisfying {pl.....px};u containg a tail of {pk}. Indeed., otherwise
there would exist a subsequence of (pk} with no limit point, contradicting

compactness of Pn. Let Ul""‘U~ be nonintersecting neighborhoods of
1

/] .....pn. respectively; then there exists a K<= such that {_ok}cuUi for k>K.
i
j

according to k§=min({k pkevi}—(k; q<jy.  If vicL'i is another neighborhood of

pi, then by compactness of Pn there must be a tail of the subsequence (o i}
k
J

Let k;=j: j=1,....K. The remaining k, may then be defined iteratively

contained in Vi; hence., o i—»pl.

Ky

Existence of Realizations

We are now ready to formally define realizations of a given transfer
matrix sequence {Hk} and discuss their existence. We base our definition of a
realization of (Hk} on the standard definition of a realization of a single

rational matrix H as in Theorem 1.2.

17




Definition 3.1 1} Suppose {Hk} canverges in R(s)rm. We sAy a sequence {uk}

in IRn(amm-r)

n{n+m+r)

is a realization of {Hk). if there exists an integer K and a

ceR such that o is a realization of H, when k>K and o, -0 in

k k k
mn(an~mkr)

n{nrm+r)

2) A realization (uk} in R is said to have dimension u.

Note that the dimension of a realization {ok} is given simply by dim 7

for any k. it Hk—*H. then continuity of # implles that v is a realization of
H in the conventional sense. we will show that there exists a realization for
any convergent sequence {Hk}: this generalizes part 1) of Theorem 1.2 to
sequences and demonstrates that the definition of convergence in !R(s)l‘m
outlined in Section 2 is *he correct one for our purposes.

To simplify subsequent discussion. we will make use of the mapping
4:R(s) "—R(s)" " defined by

4(H) (s) = —iﬂ(i).

[t is easy to see that 4 is an isomorphism on fR(s)rm and that ﬂ—l=%. Sone
elementary properties of 4 follow,
Lemma 5.2 Let HeR(s)' ", and let {Hk} be convergent in R(s)™.
1) (E,A.B.C) is a realization of H if and only if (A.E.B,C) is a realization

o} 4(H).
2)  wH)=u($(H))

n-1

3) [ the characteristic polynomial of H is A(s)=sn~nn_ s AEERRL/ P then

1

the characteristic polynomial of %(H) is t(s)=7(n05n'---‘”n"19’1) for

some r#0.

Proof 1) Suppose H(s)=C(sE—A)—lB. Then

1 1

$(H) (s) = -gC(%E-A)— !

B = C(sA-E) 'B.

18



2) From 1), if H has a realization of degree n. then so does 4%(i1). The
converse follows from $(4(H))=H.

3) Let (E.,A,B.C) be a minimal realization ot H: then (A E.B.C) is a
minimal realization of 4(H) Hence. A(s)=rldet(sE-A) for some ran {tor

details. see |[14}}, and

T(s) = radet(sAhE)

= v (~s)Vdet (i -

= 72( s) det(sh A)

_ 2 n . 1n 1. n-1

= 71( s) ((S) nn—l(s) ey
Ty

n '. ‘n- - Y 3
= (-1} Yl(nos ce nn_ls 1).

Lemma 5.3 If {Hk} is a fast sequence, then {ﬁ(ﬂk)} is a slow sequence.

Progf Since all poles of Hk tend to infinity, we can write

N, (s)
~ K
Hk(s) * 3 ,
igiaiks—l)
where {Nk} is convergent and each a, =0 as k—=. Let g=max{deg n

. cp_l)h
ik K ijk

q 1
sy, ()
$(H ) (s) = (-1)P ! ks

g-prle,
$ Mis alk,

Note that squ(é) is a polynomial matrix, each of whose elements has degree at

most ¢q. Clearly, @(Hk) has bounded poles., and the denominator of ﬁ(Hk) has

degree g+1, so i(Hk) is strictly proper.

Now consider a time -scale decomposjtion Hkxﬂsk‘ﬁfk of an arbitrary {Hk}

in R(s)™, Suppose {Hsk} and (?(ka)} have realizations of the form

{(I,Ask.Bsk.Csk)} and {(I.Afk.Bfk.ka)). Then each ka=ﬂ(%(H has

(Afk'I'Bfk'ka) 4s one of its realizations. \Defining

19




[ G} A 0
_ ) sk
Ek = [ ) Ak : { .

0 Afk 0 I

it is easy tu check that {(E

Bsk . .
By = s | Co ™ Logk it
£k

)} 1s a realization of {Hk). Therelorve.,

.A .8 ,C
kK Bk Ok
we only need to prove existence of realizations for slow sequences.

Theorem 5.4 Every slow sequence has a realization of the form ((1.Ak.8k.Fk)}.
Proof irst we treat e case r=m=1. t =N, /d, , N and | are
Proof  Firs the case r=m=1 Le Hk Nk dk where {\k} anhd .dk} e
convergent in Ris}. Then

-1

e =S xS T %k
Co= AL A2 ..
TR Rgea® Aok

where dik and pik converge as k—. To obtain a realization of {Hk} of the

desired form, set

[0 1 ?
A = , : cB= ] €= [By By Tt Baoq )
k l 5 1 S ok Pik a-1.k
Tk %1k T %1k 1

Now we consider the general case. By the definition of convergence in

tm .
Ris) . every  component sequence is convergent. Suppose

{hijk}

{(I Aij Bij Cij)) is a4 realization of {h } Let
"k "k "k ' ’ fjk’” ’

1=d1ag{3;3 j=1,2,+-.m}. C

i, ijy, .
Ak—dlag{Ak lJ—l.Z.....m). Bk

and

~ . il.= -
Ak = diag(Ak|1 1.2,....r}, B

- 3 i "' LI )
K -dlag{ck i=1.2, T}

v Gy

A simple calculation verifies that ((I.Ak,Bk,Ck)} is a realization of {Hk). -
Combining the time-scale decomposition with Lemma 5.3 and Theorem 5.4, we
arrive at the following result.

= = ; rm
Corvllary 5.5 Every convergent sequence in R(s) = has 2 realization.
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Theorem 5.4 (but not Corollary 5.5) may also be proven in an abstra
algebraic framework as outlined in [1%.Chapter 4]. Briefly, consider the
commutative ring ¢ of convergent sequences in R using pointwise operations.
and let the set of rxm preper rational real matrices be denoted by Rp(s)rm. A
convergent sequence {Hk} in Rp(s)rm may then be viewed as a formal power
series over the ring of rxm matrices with elements in c. Indeed, we may

expand each element of each H, about s=e, yielding the servies

K

(13)

ml-—a

H, = L
i=

1 1k
where the sedquences {Hik} are convergent, From this point there are two ways
to proceed. First, one can prove realizability by constructing a certain
infinite-dimensional Hankel matrix from the Hik' It must then be shown that
the span of the columns of the Hankel matrix is a finitely generated module
over ¢. A second approach is to show that the formal power series (13) is
"rational” in a certain algebraic sense. This immediately guarantees
realizability. Both conditions can be demonstrated in our framework fairly

easily; however, our proof of Theorem 5.4 is more direct and is sufficient for

our purposes.

6. Minimality
In Section 5 we shaowed that every convergent sequence (Hk} in R(s)rm has
a convergent realization (ak}. [n this section, we explore the issue of

minimality of a realization.

Definjition 6.1 1) If n is the smallest integer such that {Hk} has a

realization of dimension n, and iok} is a realization of {Hk} with dinlak=n.

then we say {a } is a imal realization of {Hk)-

21




2) If a sequence of state-gpace systems (ak} is a minimai reatization of
its rtransfer matrix sequence. we say (ok} is minimal.

Obviously. all minimal realizations of {Hk} have the same dimension,
This fact enables us to define a degree function 4 on the set of convergent
rationdal matrix sequences by setting G{Hk} equal to the dimension of any
minimai realization of {Hk}. In this section we develop a simple expression
for G{Hk} for slow sequences and then extend it to the general case. Next. we
examine a natural conjecture for determining whether a sequence {ak} is
minimal and relate minimal realizations of the same {Hk) in a manner analogous
to Theorem 1.2, part 4). Finally. we relate our results to the realization
theory outlined in [17] for algebraic systems over the ring c.

[n our developm.nt it will be helpful to exploit various properties of
the mapping which takes each state-space system into a particular choice of

numerator and denominator of 1its transfer function. Specifically, define

n{n+m+r) nirm+1)+1

Fn:R iR according to

Fn(A.B.C) = (C-adj(sf-A)B,det(sI-A)).
Here we have identified ﬁk. as defined in Remark 3) after Definition 2.1, with
mk. Note that l}‘ is continuous: if Fn(A.B,C)=(N,d). then (I,A,B,C) is a
realization of N/d. Also notice the distinction between Pn and A, as defined

in Section 2. We denote Im rn=rn(mn(“*m‘r’

).

The following series of Jemmas leads us to the first main theorem of this
section.
Lemma 6.2 Consider any pair (N.,d) where d is monic, degd=n, and N/d is

strictly proper with characteristic polynomial A. Then (N.d)elmlh if and

only if A divides d.

22
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Proof (Sufficient) Suppose
p
di(s) = A(s) 1 (S*ﬁi).
i=1
and let (I.A.B.C) be a minimal realization of N/d. Defins
+ A0 L R x*
A = , B = .t o= [C 0],
0 £ 0
where
-8
1
£ = "Ry
..pp
Then
* p
det(sI-A ) = det(sI-A)det(sI-LX) = A(s) Z (S*ﬂi) : dis).
i=1
x *_1* _.1
Since C (sI-A ) "B =C{(sI-A) B=N(s)/d(s),
*.'-* *_.._*N_(ﬂ_
C adjisl-A )B = det{sI-A )d(s) = N(s).

x x *
Hence, (N.d)=Fn(A B .C ).

{Necessary) Suppouse (N.d)=Pn(A.B.C): then (I.A,B,C) is a realization of

N;d. From {16,Theorem 5-181, we can find a similarity transformation T such
that
" I TISEY I '
T AT =10 A22 A23 , T B = B2 , LT = [0 La L3].
0 o0 A33 0
where (A22.52,C2) is a minimal realization of N/d. Note that
det(sI-A22)=A(s). Thus
d(s) = det(sI-A) = det(sI~A11)det(sI-A33)A(s). L
From Corollary 4.7, {Hk) can be decomposed into n sequences
(Hél)};i=1.2.....n. where we define H;i)=ﬂ i Each sequence has convergent CP
k
J
satisfying
<Aéi)> — <A(1)>: i=1.,2,...,rm,
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where \(l) is monic. if ‘"k’ is slow, then, from Lemma 4.3, parc 1},
(i) (1)
' — . Let
Ak A e
yoeen YL A7y,

where LUM denotes the least common multiple. Also define
NP NS
Ak = 3

-

—_— i=1,2,...01, (14}
{

R L)

Note that each A;l‘ is a polynomial and that, if {Hk} is slow, Aél)—ﬂA.

Lemma 6.3 Let (Hk} be a slow sequence with Hk-uﬂ. and suppuse H has

characteristic polynomial 4. Then A divides 4.

Proof According to Corollary 4.7, (HK} can be decomposed into n subsequences

(i) (1)

with convergent CP's A(I)-A If A divides 4 for each i, then A divides

k

A. Hence. it suffices Lo treat the case where {Hk} has convergent CP Ak—#A.

- p
Let p=min{r.m}. and consider the sequence {Hk) of 1x f (g)(?) rational

i=1
matrices. each Hk consisting of the minors of Hk of all orders. Obviously,
Hk—*H. where H is defined similarly. [t follows from elementary arguments

that Hk has characteristic polynomial Ak {same as Hk) and that. for any

polynomial g, qu is a polynomial matrix if and only if Ak divides g. [n

J

particular, A H is a polynomial matrix. Since m[slj is closed in R{(s)” for

k'k

any j, AH is a polynomial matrix. Thus. the characteristic polynomial A of H

{and H) divides 4. 5

Lemma_6.4 Pn is an open mapping.

Proof Note that Pn is multilinear: thus. it is a composition of functions on

=X .

Euclidean spaces RP of the form f(xl.....xp)=tx.x REEE b

iy

Since f and g are open, compositions of open maps are open, and products of

and g(xl.....xp)=x

opens sets ate open. it follows that vn is open.
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Lemma 6.5 Let X and Y be topological spaces with X first countable. and let
Q:X—Y be an onto, open, and continuous map. For any conversgent sequence (yk}
in v with y, —wyeY and any er-I(y). there exist xkeQ‘l(yk):kal.2.... such that

X, —X.
k

Proof Let {Ui:irl.Z."'} be a countable basis of neighborhoods of x with
[H
i

. Since § is open., each Vi=Q(Ci) is a neighborhood of y. Hence, for

any Vi. we can find an integer Ki such that ykevi when k>Ki' Furthermore,

. . U © 3 I . \ (i), _ v
there must exist points xk e(,i.k--Ki 1.Ki 2,... with Q(xk )-yk. Fot k_Ki.
select any xél)e Q~1(yn). This process defines sequences (xél)}:i=1.2..“
Without loss of generality, we may assume Ki*1>K1. If we let

Selid o . s . NG ; . 5 .
xk-xk ik Ki-l l.m...Ki. where K0~0, the construction shows that each Ui
contains a tail of the sequence {xk}. Hence, X K. -

Lemma 6.6 Suppose {Hk} is a slow sequence with Hk-aﬂ. If there are pairs

(Nk.dk).(N.d)eIm Fn such that Nk/dk=Hk. N/d=H. and (Nk,dk)nﬂ(x.d). then {Hk)

has an n-dimensional realization.

Proof Note that ghinsmer)

is first countable. Thus, if we restrict the range
of Fn to Im Fn. we may use Lemmas 6.4 and 6.5 and the fact that Fn is

continuous to conclude that there exists a convergent  seqguence

. n{n+m+r) . - .
(Ak,Bk.Lk)—»(A.B.C) in R such that In(Ak.Bk.Ck)~(Nk.dk) and
Pn(A.B.C)=(N.d). Notice that (I.Ak.Bk.Ck) is i realization of
Nk/dk=ﬂk:k=1.2..... and (I,A,B,C) is a realization of N/d=H. B

Lemma 6.7 If a slow sequence (Hk) has an n-dimensional realization. then it

has ..n n-dimensional realization of the form {(I.Ak.Bk.Ck)}.

Proof Suppose {Hk} has a realization having dimension n. Since {Hk} is slow,

the decomposition (7)-(11) shows that {Hk} is of the form

-1
Hk(s) = Csk(sI-Ask) Bsk'




is g+ with ySn. Define

A 0 B
| sk | sk e -
Ak = [ ]. Bk = [ l. Cy ~ [csk u}. )

0 o

Theorem 6.8 For any slow sequence {Hk}.

where Ask

G(Hk} -~ deg \.

Proof Let ng=deg A . We first show that there exists an np-dimensional

o Qi) _rtid, (i) oAl o ogld) N Aprn
realization of (Hk}. Let Nk —Ak Hk and N=AH: then Nk and N are

i) A N
(Nk .Ak

bounded, Remark 4) after Definition 2.1 shows that deg Aé

polynomial matrices with J—{N.A) . Since all poles of H

i)

ate
k

=deg A=ng. Thus,

from (14) and Lemmas 6.2 and 6.3. (Aél).aéi)).(N.A)eIm .- Suppose ((N.3)}
is constructed by setting N =N (1) and A .=A(1) whenever H .=H(i). where the
kb kil ki
J J J

k; are defined by the decomposition of Corollary 4.7, Then (Nk.Ak)ennPno.

The desired result follows from Lemma 6.6.
It vemains to show that ng is the minimal dimension over all realizations
of (H

k}' Suppose {Hk} has an n-dimensional realization. Then, from

Lemma 6.7, it has an n-dimensional realization of the form ((I.Ak.Bk.Ck)L

Let (Nk,dk)=rn(Ak.Bk.Ck) and (N,d)=rn(lim(Ak.Bk.Ck)): from Lemma 6.2, Ak
divides d_ for every k. Letting d€1)=d . A(i) divides d(i). Since U is
k J Kl k k n
j [y
continuous, d(i)—*d; thus, closure of R({s]cR(s) guarantees that each A(l’

k
divides d. Thus A divides d. and

n =deg d 2 deg A = ng. ~
The following result offers one method of calculating 6(Hk) for an
arbitrary convergent sequence {Hk} in R(s)rm.

Theorem 6.9 If Hk=Hsk*ka is a time-scale decomposition, then

(H ) = 8(H,, )} + 8{H, ).
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Proof Suppose {(E k Bk Lk)) is a minimal realization of (Hk} Appealing to

(7)-(11). it suffices Lo show that {osk)=((I.Ask.Bsk.Lsk)} and

afk}=((Afk.I.Bfk.ka)} are minimal realizations of {Hsk} and (ka}. Suppose

there exists a realization (¢ k} ((E sk Csk)} of (Hsk} with
dim ask<d1m Tek By Lemma 6.7. we may assume that Esk=l“ Let
I 0 A, O B
B s _ 1sk s . | skj < _ =
Ey * [O . ] A - L J' By [B } Ck = gk Coil
- tk fk
Then {ok}={(hk Ak Bk Lk)} is a realization of (Hk) with dimcﬂ<<dUnok. This

ek’ -
Thus, one way to find 5(Hk) is to first perform a time-scale

is a contradiction. A similar argument shows minimality of {o

decomposition Hk=Hsk*ka

6(ka}=5(€(ﬂfk))A Fortunately, the next theorem simplifies this task and

and then to use Theorem 6.8 to find 6{Hsk) and

shows how to calculate 6(Hk} without resorting to time-scale decomposition.

Recall that, for any HeR(s)rm. H, denotes the polynomial part of H.

£
Theorem 6.10 Suppose Hk-uﬂ. Then
5(H } = max Tim (deg a'l) + ISR
k k f
i k
Proof Suppose Hk=Hsk'ka is a time-scale decomposition of (Hk}. and let
(i) (i)
=H = ..
sj ) fj i
k fk
5 i
- ] (1) (1), (i) . . . , )
[t is clear that Hk "Hsk £k is also a time-scale decomposition and that
(i) (i) (i) (i)
Hsk and Htk have characteristic polynomials A sk and Afk , respectively.
From (12},
(i) (i) "
6 = ag) g (18)
From (15) and Lemma 4.5, part 2), A;i)—*A‘ ). Hence, from Theorem 6.8,
6{H8k)=deg A. Also, since each A;;) is convergent and monic,

deg Aé;)=deg A(l) for large k.
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From (3). <A, > is of the form

tk
b p
\Afk> = ilgl(aiks-l)> = \'.:pks "...“‘:IKS"1>.,
where eik—~0 as  K—=o, Note that some of the sik may vanish: so, from
Lemma 5.2, part 3), ﬁ(ka) has characteristic polynomial of the form
- s = \q,; ~q‘1 -
-k(b) 3 'lkh EERLIE

where q may depend on k. Therefore, the limit of any convergent subsequence

of (tk) is of the torm sq. Suppose 7 is the least common multiple of these

)

limits: then t=s*. where
q = lim deg(z,)) = Lim p{9(H,_ )) = lim
K k k fk K

The last equality is obtained from Lemma 5.2. part 2). Arguing as in

uld, ).

fk

Lemma 5.2, part 2}, 6{?(Hk)}=6{Hk} for any {Hk}. Hence, from Theorem 6.8, we

have

8{H, } = 8{4(H = deg ¢ = (.

ek’ !
Theorem 1.2, part 2) and Theorem 6.8 show that u(ka)=dmzAfk+y((Hk)f). From

Theorem 6.9,
G(Hk} = deg A ~ lim (deg Afk + y((Hk)f))
= lim {deg A + deg Afk + u((Hk)f))
= max 1im (deg A + deg a3 Ot ).
. fk k 'f
i k
It remains to prove
i) _ N (i) .
deg Ak = deg A + deg Afk . {16)
By the definition of Ail)y
deg Aii) = deg A + deg Aii) - deg A(l). {17)
Since deg A;i}=deg A‘i). it follows from (13) that
(i) _ (i) (i)
deg Ak = deg A + deg Afk . (18)

Combining (17) and (18), we obtain (16).
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Copgliary 6 11 Suppose H —H. [f the CP of {H } is convergent. then

5{H, ) = Tim u(H ).
K

K
Proof 1In this case, n=1 and A&l) Ak’ 80
6{Hk} = Iém {deg Ak * y((Hk)f))
= ém (H(Hk)S - u((Hk)f))
- Tim wtH ). )
K k
Our next goal is to generalize part 3) of Theorem 1.2. An obvious

conjecture is that a realization (ak) of {Hk} is minimal {f and only j§if each
o is controllable and observable (as defined in (8]). While controllability
and observability for every k (or., indeed, for infinitely many k) are clearly
sufficient for minimality. the next examples demonstrate how necessity can
fail.

Example 6.12 1) Even for a slow {Hk}. minimality of {ok} does not imply

controllability and observability even at a single point, Consider the

sequence {Hk) in Example 4.3, part 1). We can decompose {Hk) into two
subsequences
Hél) . §+2 :
(s+1) (5“2*m)
HiZ) - §+3 —.
(s+1)(s*3*§k)
For Hél) and H§2), the CP's are
Aél) = (sf1)(s*2+§E__) - (8+1)(8+2) = A(i)
A3 < (5e1)(848r5k) — (8+1)(s-3) - a'%),
Thus
(s) = LCM {A(l) (2 ’} = (s+1)(s+2)(s+3).

Since {Hk} is a slow sequence, Theorem 6.9 indicates that 6{Hk}=degz3=3.
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Every minimal realization (Gk} of {Hk} must have dimension 3. but u(ak)=2 for
each k; hence, no ak is controllable and observable.
2) In this example. the CP converges. but controllability and

observabllity on a subsequence is the most that can be achieved. Let

1. k even
dk(s) T —t , k odd
(-!-5*1):Z

k

A simple calculation yields a{uk}ze, hut u(Hk)=1 when k is even. so any
realization must contain infinitely many terms which are not controllable and
observable.

The next result offers a weak extension of Theorem 1.2, part 3) to the
sequential case.

heorem 6.13 Consider a convergent sequence (Uk}=((ﬁk'Ak‘Bk‘ck)}' and let

H, =C, (sE, -A )-IBk. If the CP of {Rk} converges and {ak) is minimal, then

there exists a subsequence (uk } such that o is cvontrollable and observable

J J

for every j. [, in addition, {Hk) is a slow sequence, then lim ak

controllable and observable, so Uk is controllable and observable for every

is

sufficiently larée k.

Proof From Corollary 6.11, there exists a subsequence (Hk } of {Hk} such that
J
6{Hk)=u(Hk ) for all j. Therefore, each ok has dimension u(Hk

J J J
controllable and observable. If (Hk} is a slow sequence and the CP converges,

) and must be

Lemma 4.5, part 1) shows that A —A, where A is the characteristic polynomial

Kk

of H=lim Hk. Since each Ak is monic, for large Kk we have

u(Hk)=deg Ak=degA=u(H). From Corollary 6.11, dimaao“(uk}=u(i{k): hence, ¢ is

controllable and observable. g

Restricting attention to slow sequences, Example 6.12, part 1) has

special significance from an abstract algebraic perspective. It is easy to
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o
show that algebraic controllability and observability over the ring c;;@fﬁ%‘

convergent real sequences. as defined in [17,Chapter 2]. {is equivalent 59‘

. el
s T -
W e e e e e

controllability and observability of T for sufficiently large k. Thus,

PR

linear systems over c do not satis{y the property that minimality implies
algebraic controllability and observability.

We conclude this section by examining the problem of extending
Theorem 1.2, patrt §) to the sequential case. The following examples show
that, in our case. two minimal realizations of the same sequence {Hk) may not
be related by nonsingular transformatjons (cf. [17,Theorem 4.19]).

Example 6.14 1) In fact, two minimal realizations may not be related by
nonsingular transformation for any value of k. To see this, let (Hk) again bhe

the slow sequence given in Example 4.3, part 1). In Example 6.12, part 1). we

showed that G(Hk}=3. Consider the two minimal realizations {(I'AIR'BR'CIR)}

and {(I.Azk.Bk,Czk)). where
(I 0 1 0o
0 0 1 . k even
3y 1144 (6.l
A _ _-(6 k) (lli'k) (6+k)'
1k =)
0 1 0
0 ] 1 , k odd
2 3 1
LL-(6 k) "(11+§’ -(G*E),
[ 0 1 0
Aak ) 05 1 ° 7 1 12
.-(6+§+;7) *(11+§+§;) -(6+§)

2 1

0 [6+§ 5+E 1], k even
B, = 10|, C,, = (6 5 1], C.. = .
kooly] K 2k [e+-ﬁ- 5% 1], k odd

Suppose there exist convergent nonsingular matrix segquences {Mk} and {Nk} sych

that
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for each k. Then Nk=M;1 and A2k=MkAlkM;1. But a simple calculation shows
that Alk and Aak have different spectra, yielding a contradiction for each
value of k.

2) When the CP converges. Theorem 6.13 implies that there exists a
subsequence on which every minimal realization is controllable and observable.
Hence, Theorem 1.2. part 4) guarantees that for any two minimal realizations
there exlst nonsingular sequences {Mk} and {Nk} which relate the various

matrices. However, it may not be possible to find {Mk) and {Nk} which

converge. Consider the sequence given by

1
Hels) = IJL'
l?SH'
with realizations (g.-1,.1) and (g.-1.1.3). We have immediately M t=1. so
M, =k

However, there is still one interesting case where a result is possible.

Theorem 6.15  Suppose {Hk} is a convergent sequence in lR(s)rm and let
((Eik'Alk‘Bik'Clk)): i=1,2 be two minimal realizations of {Hk} with
(Eik'Aik‘Bik‘cik) controllable and observable for every i.k. Fu..ier assume

that each (Ei'Ai'Bl'Ci)=lim(gik'A1k'Bik‘Cik) is controllable and observable.

Then there exist nonsingular matrix sequences (Mk) and (Nk} with Mk-M and
Nk—*N, M and N nonsingular, such that nglka=82k’ xkAlka=A2k' Mk81k=82k. and .
Clka=Czk for every K.

Proof Applying the decomposition (7),(8) to {(Eik’Aik'Bik‘Cik)) vields

decomposing matrices M —~Mi and Nik—-tN1 and decomposed system matrices Aisk'

ik

B C , and C , with limA nilpotent. This determines in

Airk' Bisk' Bie Cisk ifk 1fK
two ways the same time-scale decamposition'ﬂk=ﬂsk+ﬂfk given by




-1
Cisk(SI-Ajgc) B
-1

Hep(8) = Cipe (88 D) By
Note that, for sufficiently large k, each of the subsystems (I‘Ai

HSK(S)

13

isk

(s) {sA

sk*Bisk Cisk
and (Aifk‘[‘Bifk'Cifk) myst be controllable and observable. From [18.p. 208},
T -1,,T

the similarity traasformation Tskz(VZSKVZSK) vaskvlsk' where Visk is the
observability matrix of the pair (Aisk'cisk)' takes (I'Alsk‘alsk'clsk) into
(['Aask'BZSk'Czsk)' Furthermore, (Tsk) converges to the nonsingular matrix
ol -1,,7 . - .
Ts'(vasves) stv1s‘ A similar construction vyields Tfk-ﬂTff A
straighttforward calculation shows that the sequences
T, 0 ! o ;
M = \'1-1 sk i N = ‘:I sk &*1 ;
ko T2k o T Ttk Tk Uik 0 T~1 2k ’
fk fk
vield the desired result. ]

Qur final result follows with the aid of Theorem 6.13.

Corollary 6.16 If (H is a slow sequence with convergent CP and

k}
{(Eik'Aik‘Bik'cik)}; i=1,2 are any two minimal realizations, then, for
sufficiently large k. there exist nonsingular matrix sequences {Mk} and {Nk}
and nonsingular matrices M and N such that Mk—nﬂ. Nk—ﬂN. nglka=Ezk'

YA N =A , MB

%A VAo MeByk8

oKk’ and Clk.\'k=c2k for every k.

7. Concluding Remarks
The problem discussed in this paper is the realization of convergent
transfer matrix sequences with convergent generalized state-space sequences,
Just as state-space sequences may be decomposed according to time-scale ) }
behavior, a time-scale decomposition for any rational matrix sequence may also
be achieved, We have shown that convergence of the CP of a sequence of

vational matrices is a crucial ‘csue in the minimal realization problem. It

was proved that, when the characteristic polynomial of a rational matrix
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sequence is nhot convergent., the rational sequence can be decomposed into
finitely many subsequences .n such a way that each subsequence has convergent
CP. Our results demonstrate that the general problem can be reduced to
finitely many subproblems, each of which can be handled using a simpier
theory. It is hoped that our results will complement the robustness

literature at large.
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Technical Notes and Correspondence

Linear Compensator Designs Based Exclusively on
Input-Output Information are Never Robust
with Respect to Unmodeled Dynamics

J. DANIEL COBB

Abstract—We Investigate the effects of unmodeled, higher order
dynamics or parasitics on the stability of linear control systems. We first
describe & class of perturbations of a given state equation which cannot be
distinguished from the original on the basis of input-output measure-
ments alone, Then it is shown that, given any plant-compensator pair,
such perturhutions of each system cun always be found which destabilize
the closed-loop configuration. Finully, the effect of destabilizing pertur-
bations on output behavior is explored.

I. INTRODUCTION

The effects of high-frequency or parasitic phenomena on closed-loop
system performance have long been studied. A popular framework for
addressing this issue has been that of singular perturbation theory (see,
e.g., {11, [2]). The point of view that parasitics are ultimately connected
with unmodeled plant dynamics has become quite popular in recent years,
sometimes with surprising consequences. For example, it was shown by
Rohrs ef al. {8] and Ioannou and Kokotovie [3] that high-frequency
phenomena can lead 1o instability in adaptive control schemes. Adaptive
controllers being highly nonlincar, o nutural question to ask is whether
parasitics could have a similar destabilizing effect on control systems
which are based on linear compensators. This was answered in the
affirmative by Khalil in {4] and [5). A notable effort to circumvent these
difficultics in the case of lincar, time-invariant systems was made by
Vidyasagar, culminating in the results of [6] and [7).

Our work is most similar to {7}, but differs primarily in that we
investigate the stability of a closed-loop system when both the plant and
compensator are perturbed. The idea of perturbing both systems has been
largely neglected in the literature (with the notuble exception of [6]), even
though one can easily make a strong case for considering such
perturbations. Indeed, one need only recognize that a compensator, like
the plant, is a physical system governed by a mathematical model which is
inherently subject to uncertainty.

In light of examples such as those contained in [4] and [5), even
arbitrarily small model errors arc to be feared since such effects have the
capability of destabilizing a system just as certainly as larger errors do. In
fact, those examples illustrate that in some cases, small errors can cause
greater instability than do farger ones.

In this paper, we intend to show that, when uncertainties in both plant
and compensator are taken into account, even strictly proper compensa-
tors arc subject to parasitic destabilization. Hence, properness of the
compensator is really not the pivotal issue here as it is in [7]. We will
show that, if only input-output information concerning the plant and
compensator is available, robust compensation can never be achicved.

The results of this paper are by nature primarily negative. We do not
claim to have a clear understanding yet of exactly what constitutes
sufficient information for robust compesisation, although we do mention a
possible approach to finding an answer in Section V. 1t is hoped that our

Manuscript received August 1, 1987; revised August 27, 1987. Paper recommended
by Past Associate Editor, S. P. Bhattacharyya. This work was supported by NSF Grant
ECS-8612948,

The author is with the Depaniment of Elcctricat and Computer Engincering. University
of Wisconsin, Mudison, Wi 53705,

IEEE Log Number 8718553,

results will stimulate further discussion in an area which has been
neglected by all but 4 handful of researchers.

11, PRELIMINARIES

We study systems characterized by the linear, time-invariant state
equations

xX=Ax+Bu, y=Cx+Du )

and perturbations of (1) given by

[ o][]- [ ] ) [a] wrmenee

@

where the submatrices in (2) satisfy
Ay-ApnA ;;An=i4. Bi~AnA ;;‘32=3 3)
C-GA L Ay=C, ~CiA}'Bi=D @

and A, is nonsingular. If we set ¢ = 0 in (2) and eliminate £, (1) is
abtained; hence, (2) withe = 0 may be thought of as a state augmentation
of (1). Seting ¢ > O in (2) constitutes a perturbation of that augmentation.
For the moment, we allow Ay to be either stable or unstable,

To aid our analysis, we will use the decomposition for singularly
perturbed systems developed in [ 10] where it is shown that there exist real
matrix-valued analytic maps ¢ —~ M, and ¢ ~ N,, defined on some
interval [0, B), such that M, and N, are square and nonsingular for every €
and

I 0 _t17 0 An An alAs O
M. [o el] N,= [o A,,] ' M. [A,. Au] N, [o 1}
(5

with A/, and A,, analytic and Ay nilpotent. According to [10], the
matrices M, and N, are unique up to change of bases; hence, we may take
M, and Np to be any matrices which achieve the decomposition (5) at e =
0. For example, let

| —AnA} 1 0
M= N, - -]
o [o ! PR A Ay AR

Next, define

[g;:] =M [::] .'C" C,J"C' CI]N,. (6)

Equations (5) and (6) yield the decoupled state equations

I 0 j', . A m 0 Xs Bn
y= Qle + C/:xf (7)

where

0018-9286/88/0600-0559$01.00 © 1988 IEEE
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We now present a series of technical results which will be useful in
Sections HI and IV,

Lemmal: Ag = A, By = B, Cyo = C, By = By, Cpp = A,

and Ay, = ¢F, for every ¢ € [0, 8) where Fy = A5
Proof: From (5) and (6), we have

[ o]-m [ ] me[ 5]
[5]-w[2]-[2]

ICe Cpl=IC GCIM=|C CM,,‘I-

Let

and note that

r o 10 10
-1 = -l_
Ns ’[A,. Au] » M, [o el] [o A A

We thus have eMy;, = A, Ny, 50 Ay, = ¢F, where Fo = MyuN 3} =
A3l a

2!2=rom Ay, = eF,, we immediately obtain the well-known result that the
cigenvalues of (2) wiuch tend to infinity as ¢ — 0* are “'close’’ to those of
(1/€)Az; (see, e.8., {2, Corollary 2.1]). One useful way of stating this
tesult is the following.

Lemma 2; If u is an eigenvaluc of Ay, v > 0, and R < oo, then there
exists g > 0 such that (2) has an cigenvalue A, satisfying |\,} > R and
jarg A, — arg (17e)u] < y whenever 0 < ¢ < ¢

Proof: From (7), the eigenvalues of (1/¢)F ! are also eigenvalues
of (2). Since Fy! = A and F,°' is continuous in ¢, each F,"! has an
cigenvalue u, with p, ~ i as e= 0*. Choose ¢, so that {1/¢)],} > R and
larg u, — arg p| < vy whenever 0 < ¢ < ¢, and let M\, = (1/¢)g,. Then
A is an eigenvalue of (2), |\ > R, and jarg A, ~ arg (1/e)}p} = |arg p,
- arg gl < v. ]

Suppose the transfer matrices of (1) and (2) are P and P,, respectively.
We will need conditions under which an eigenvalue of (2) is also a pole
of P,.

Lemma 3: If (A3, By, Cy) is controllable and observable, there exists
¢ > 0and R < o such that every eigenvalue A, of (2) satisfying [A,| >
R is also a pole of P, whenever 0 < ¢ < ¢.

Proof: An eigenvalue ), of (2) is a pole of P, if

AN-Ayn  -Aq B aM-t A=A 0 B,
-Ay (NI-Au 8) ¢ 0 CN’-F:' B,,

10 .
[0 F,] NtO 8

0 I

and
-Ap

A=Ay
~Ay  MN-Ayp
C G

M0 Nl = Ay, 0 ' I 0 ’
= 0 ] 0 (&l“ F. 0 F, N, (6]
Cu CnF;!

have full rank, Choose R > may. {|\] |\ is an eigenvalue of A}. From
Lemma 1, (F;', B, CooFg') = (An, By, C;). Hence, there exists ¢ >
0 such that, whenever 0 < ¢ < &, (F,”', By,, C; F ') is controllable and
observable and [A\,| > R implies that ), is not an eigenvalue of A,,. It
follows immediately that all matrices on the right-hand sides of (8) and (9)
have full rank. a
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11, INPUT-OUTPUT EQUIVALENCE

In this section, we explore the relationship between the nominal and
perturbed systems (1) and (2) and discuss the conditions under which they
are indistinguishable if only input-output information is available.
Consider the process of obtaining or veritying an input-output model of a
physical system. We are allowed tc take measurements by applying an
input signal starting at ¢ = 0 and Ly observing the output; it is assumed
that no direct access to internal states is possible. Once a nominal model is
obtained, a controllable and observable realization can be chosen,
yielding the state equation (1). Since we have no direct control over initial
states except through the input ports, and since £ = 0 presumably occurs
long after the system was built, the system may be assumed initinlly ul
rest. Henee, we choose x(0) = 0 and £0) = 0in (1) and (2).

We define the class of admissible input signals U to be all C' functions
w:{0, 7} — 1™ satisfying max flu(r)f] < Ko, max (0} < K, and u(0)
= 0 where the constants r < o, K, < ®, and K, < o are independent
of u. From an engincering standpoint, it is not unreasonable to place such
restrictions on . Indeed, in any real-world scenario, there is a maximum
length of time one would be witling to invest in collecting data, as well as
a maximum amplitude of voltage, force, or other input quantity that could
possibly be generated using available technology. Fusthermore, there is
always an upper bound on the rate at which u(f) can be made to vary (e.g..
every amplifier has a maximum slew rate). Thus, the constants 7, Ko, and
K,, although possibly very large, must be finite. Since no input is applied
prior to ¢ = 0 and since K; < o, we must have u(0) = 0. We would
surcly be in serious trouble if, in order to design a robust compensator, we
needed the capability of generating inputs over arbitrarily large intervals
of time o1 with arbitrarily large amplitudes or rates of change.

Associated with any real-world measuring device is a minimum error
which can be detected. For example, if a function y represents an output
voltage, velocity, or other physical quantity of interest, there must exist a
number & > 0, characteristic of the measuring device alone, such that
another output § cannot be distinguished from y if

sup {Ily) =N  Osrs7)<é. (10)
For the remainder of the paper, we assume a fixed source of input signals
and measurements and, consequently, a fixed set U and number & > 0.

The quantities U and & together determine an equivalence between
systems: {wo systems are indistinguishable under input-output measure-
menm if for every u € U, the output functions y and § of the two systems
satisfy (10). The next .esult applies this idea to the nominal and perturbed
models (1) and (2).

Theorem 1: If Ay is strictly stable, there exists ¢ > 0 such that,
whenever v € U and 0 s € < ¢, the respective outputs y and v, of (1)
and (2) satisfy max {{y(0) - y ()| 10 st s 7} <&

Proof: We first note that y{f) = [§ Cyoexp (nAs)Broti(t — n) dn
~ CrnByou(t) = y(t). Hence, we need only show that there exists & such
that [[,(6) - y()] < 6 whenever 0 s t s rand 0 S € < .
Decomposing ¥, = ¥y, + ¥y, in the obvious way, we have ||y, (1) -
YOIl = Ko {5 1ICse exp (nAs) By — Cioexp (1As0)Byol| dn. Choose ¢
> Osuch that 0 < ¢ < ¢, implies max {J|{C,, exp (nA4;)Bs, = Cso exp
(A0 Bl [0 s n s 7} < 8/(2Ky7). Integrating by parts, we oblain

exp <gF.")

* B + Kol Cre B~ Cro Byl

(D=3l K G | dn

[
o

There existe; > Oand K < oo such that flexp ((F )l < K, [|Cy ]l < K.
and [|By.]] < K whenever t = 0and 0 < ¢ < . Let § = 6/(4K,K*(K
+ 7)). We know that there exists ey > 0 such that flexp (/) F )|l < §
whenever § S n s rand 0 < ¢ < ¢ (see, e.g., (13)). Finally, there
exists ¢, > Osuch that | Cp, By, ~ CrsBpll < 6/4Kswhene < &4 Leten
= min {¢,, &, &, &}. Then 0 < ¢ < ¢ implies |, (1) ~ yo(N)} < 6/2
+ K KYKS + 18) + 8/4 = 6. O

We have thus established that, for sufficiently small ¢, (1) and (2) are
indistinguishable on the basis of input-output information. Hence,
although the physical system is nominally described by (1), an equally
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valid model from an input-output perspective is given by (2) with ¢
sufficiently small and Ay strictly stable.

IV. CLOSED-LOOP DESTABILIZATION

We are now ready to investigate the effects that the system perturba-
tions in Section II have on a closed-loop configuration. Consider the
feedback compensator governed by

I=Fz+ Gy, u=Hz+v. (11)
We consider only compensators with strictly proper transfer matrices
since the results of [7] indicate that nonstrictly proper compensators are
never robust with respect to unmodeled dynamics, Perturbations of (11)

are of the form
1o 2| _{ Fu Fa z G,
B HRERIHEEE

u=Hz+Hit+v (12)

where
Fy=FuF ' Fu=F, Gi-FyF, G,=G (13)
H,-H,F;'Fy=H, -HF ;' G,=0 (14)

and Fy, is nonsingular. The discussion of Section IIT applics equally well
to both plant and compcensator.
Cosnbining (1) and (13) in a standard feedback configuration yields

HEEE-HIHEHAE

y=Cx+ DHz. (15
Combining the perturbed systems (2) and (12) gives
rooo]fx]
0700 z
00 e 0]]E
00 0 ¢ ¢
-All B\H, A, BH, X B,
= GC, F, GG Fy 4 + 0 v
Ay BH, An BH, | 1% B,
GG R GG Fa || 0
y=Cix+C2. (16)

Let (15) and (16) have transfer matrices H and H,, respectively.

From this point on, we assume that Az and F; are strictly stable
matrices. Thus, according to Theorem 1, (2) and (12) are equivalent to (1)
and (11) for sufficiently small ¢ in an input-output sense. The perturbed
closcd-loop system (16) is also of the form (2); no obvious conclusions
can be drawn, however, concerning stability of either (16) or the matrix

An BiA,
X= n Gln i
[ G,C;, Fyn
In view of Lemmas 2-4 as related to (16), we see that the properties of X
as well as those of the matrices

Y= [ff] , 2=[Cy 0}

are crucial for understanding the behavior of (16),

We are ultimately interested not only in the cigenvalues of the closed-
loop system, but also in the poles of H, and the behavior of the system
output (1), The next two results treat first the closed-loop poles und then
output behavior. As 2 means of quantifying instability, let a e (0, x/2) and
consider the open sector $ = {s € ¢ - {0}] Jarg 5| < a}.

Theorem 2: Suppose R < o, (X, Y, Z) is controllable and

> < >
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observable, and X is nonsingular with an eigenvalue in the sector S. Then
there exists ¢ > 0 such that H, has a pole p, € S satisfying [p] > R
whenever 0 < ¢ < €.

Proof: Since X is nonsingular, the closed-loop system (16) is of the
form (2). Let ¢ € S be an eigenvalue of X. There exists ¥ > 0 such that
s ¢ S whenever Jarg s ~ arg (1/e)u] < . The result then follows from
Lemmas 2 and 3. 0

Now consider behavior of the output y(f) in the closed-loop system
(16). Theorem 3 shows that under certain conditions, the instability
described in Theorem 2 also has a pronounced effect on y(1). Let m denote
Lebesgue measure.

Theorem 3: Suppose R < 0,6y, 8, > 0, (X, Y, Z) is controllable and
observable, and X is nonsingular with an eigenvalue in the sector .

1) There exists e > 0 such that corresponding to each ¢ € (0, €,
there exist vectors Xo € B”, 2o, € R*, £, € R, to. € W with ||xo. ]|,
2ol llEoclls 1ol < & and'a set @, € 10, 7) with m@, < 8 such that the
output y, of (20), subject 10 X(0) = Xo,, 2(0) = Zae, £(0) = ooy $(0) =
o, and u = 0, satisfies ||y ()] > R for every t € [0, 7] - Q..

2) There exists ¢ > 0 such that corresponding to each e € (U, €), there
exist a continuous function &,:[0, 7} — R with Jju (O] < 8, forallt €
{0. 7} and a set @, C [0, 7] with mfl, < &, such that the output of (20,
subject to x(0) = 2(0) = £(0) = {0) = Oand ¥ = y,, satisfies ||y, ()]
> Rforevery t € {0, 1] - Q..

Proof: 1) Since R 1s arbitrary and the system (16) is linear, we need
only prove the result for a single vector norm, say, the Euclidean norm.
The decomposition (7) may be applied to (16), yielding real-valued
analytic matrix functions M,, N, 4,,, By,, * * *, F, defined on an interval
{0, B1. Since Fy = X ~!is nonsingular, F,"!is analytic. It is shown in {15]
that there exists a continuous complex unitary matrix-valued function ¢ ~
U, defined for sufficiently small values of ¢ that puts F"! into continuous
upper triangular form—i.e.,

B @y "0 O pakie

0 - - .
U-IF- U= .
. o Opafutpsrbn
0 0 0 s

where each of the maps e ~* u,, and e = ay, is continuous. Additional row
and column interchanges can be used to reindex the u,,; equivalently, U,
may be chosen so that g9 € S.

Let

Since N, is nonsingular on (0, B8), |iN,] is nonzero, Standard norm

inequalitites reveal that | W,j| < 6,. From (7), it foliows that the natural
response of (16) due to the initial condition w, is

I

& [P 0

J) == (CU exp GUIFSIUD |

17
2N n

0
From Lemma 1, (F5!, Cpo) = (X, ZX ). This pair is observable since
X is nonsingular; the corresponding observability matrix is

zZx-! z

z X

ZX = : X-
zimvi-z Zxﬂot-l

and the pair (X, Z) is observable. Thus, (Us'F5'Us, Crlly) is
observable. Since Uy F; ', is upper triangular, the first column of
Crolp is nonzero. Suppose o # 0 is the ith entry of the first column of
CyoUs. Then the same entry a, of Cy, U, is nonzero for sufficiently small




- -
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¢. From (17), it follows that §, has ith entry ,.() = (6:/Q N |]))ex, exp
((1/)p, 1), Thus, Re g, has the ith entry

Re 5, (0 =6,/ N, D).} exp (;' Re u), 1) cos (;' o g, f Harg o).

Since ;0 € S, Re py, > 0 for small ¢. From elementary analysis, there
exists e > O such that 0 < ¢ < ¢ implies the existence of a set {J, with
mQ, < & and J|Re §,(0)l > Rforalit € {0, 7] - 0,.

We note that the injtial condition w, may be complex, In general, the
natural response of (16) is of the form y(¢) = I',(¢)w where I',(¢) is a real-
valued matrix. Hence, Re y(f) = I',(f) Re w, and if we set {Xo,Zo, o for] 7
= Re wT, we obtain an output y, with ith entry y,(f) = Re J,(1).
Therefore, |y, () 2 |5 (0] > Rforallt € {0, 7] - Q,. Finally, we
note that |xal, 2ol il dolls 5ol S IRe Wl = flwell < 8.

2) Our approach is to construct an input function u, which steers the
system (20) from the origin to some state w, satisfying the conditions of
part 1), the transfer occurring on an arbitrarily small ¢ interval; then the
system will be allowed to evolve from w, with zero input. We first
consider the pair (F !, F,"!By,). From Lemma 1, (F5*, F5'Bjo) = (X,
XY). This pair is controllable since X is nonsingular; the corresponding
controllability matrix is

Xy xiw XY =2XY XY XreE-ty)
and (X, Y) is controllable. Hence, (F!, F."B,,) is controllable for
sufficiently small . Let

Ve()=B] F T exp (=tF YW (1)~ exp (~7FT) (18)

where the Gramian W,(r) is given by W,(r) = (I exp (=nF ")
F7'By,BIF T exp (~9F T)dy. W, is nonsingular for small e since
(F-', F;‘B,.) is controllable (see {11, p. 184]). All matrices in (18)
converge and exp (—¢FT) converges uniformly on {0, 7} as ¢ = 0*;
hence, ¥, converges uniformly to ¥,. Thus, there exists a number M, <
oo such that ||, ()]l < M, forall t € [0, 7} and & sufficiently small.
Choose M, < oo such that || C,, exp (1A,,)]| < M, for small ¢ and all ¢
€ [0, 7] where C;, and A,, are given by (7). Since N,"! is continuous, we
know from part 1) that for sufficiently small ¢, there exist real vectors xp, ,
Zoes oo and Lo with lxa ||y 2o lls Eoclls [l Soell < 81/2M|IN, ") and a
set f}, with ml, < 6,72 such that the corresponding output §, of (16)
satisfies || £,(0)] > R + (My/M,)6, for every 1 € [0, 7} ~ {,. Let

Xoe
Xose - Nt 20,
[ XOI( ] N. EO« ) ( 19)

fo.

Then the output §, may be written 9, = y,, + y;, where y, (1) = C, exp
(tA;,) Xor, and y, (1) = Cj, exp ((1/€) F') xoy,. From (19), [lxe, )| < &1/
M,; therefore, |iy; (0] < (My/M,) 8, for every ¢ € [0, 7. It follows that
08 > IpOll = Iy Ol > R for each ¢ € [0, 7] ~ {,.

Next, define 4,(f) = v, (t)xoz,. Then |lxos || < 6;/M, guarantees that
(O} < &y, and &, steers the system X = F'x + F ' Byu from the
originas t = 010 xoz, at ¢ = 7. (See, e.g., [11, p. 556].) Let

0(;), Ostser
u'(')_{ 0, er<tsy,

Then Ju, (O} < 6 and u, steers the sccond subsystem in (7) from the
originat 7 = 00 Xyy, At { = 7. 4, also steers the first subsystem in (7)
from the origin to some state %y, at f = er. Since o, i given by the
convolution integral £y,, = (¢ exp (1A4,,) By, u,(1) dt, the construction of
u, and uniform convergence of exp (1A4,,) guarantee that X, ~ Oase —
0+*. Hence, #;, = O uniformly on [0, 7] as € = 0* where f,,(¢) = C,,
exp (1A;)%as.. Applying the input u, steers the system (20) to w, =
N,[%os X0s )T at 1 = er, For t € [er, ], the corresponding output is y,(1)
= Jo{t = €1) + Yyt = €n), 30 |y, (Ol > R = [|5,(t = en)]] > R for
small eand all ¢t € [er, 7} ~ (er + {},). Thus, if we choose & sufficiently
smell with ¢ < 85/2,and 0, = [0, er} U (er + {1,), we oblain mf), < 4,
and §y(0f > Rforall t € [0, 7] ~ N, whenever0 < ¢ < ¢ O
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The divergence of the output of the closed-loop system described in
Theorem 3 is referred to in analysis texts as **almost uniform convergence
to infinty.** In view of the arbitrarily tight bounds that may be placed on
an mput or initial condition which generate this divergent behavior, we
conclude that. if the assumptions of the theorem are met, unbounded
instability at the output of a closed-loop configuration can result from
arbitrarily small noise impinging on the system.

So far we have demonstrated that the existence of destabilizing
perturbations of the plunt and compensator is guaranteed if' a certain lincar
algebra problem admits a solution. Indeed, if any Ay, By, and C; are
chosen, (3) and (4) may he satisfied by simply selecting A2 and Ay
arbitrarily and solving for 4y, By, and C;. A similar remark applies to
(13) and (14). It is sufficient, therefore, to find Ay, By, Ci, Fi3, Gy, and
Hy such that 1) Ay, and Fyy are strictly stable, 2) (X, Y, Z) is controllable
and observable, 3) X is nonsingular with an eigenvalue in S, and 4) (4)
and (14) are satisfied. Theorems 2 and 3 further indicate that, if 1)-4) are
met, the resulting instability in (16) becomes progressively worse as ¢
0 since R may be chosen arbitrarily large. Thus, arbitrarily small
uncertainty can lead to arbitrarily large instability.

We now address the linear algebra problem 1)-4). We really need to
find only one solution in order to demonstrate the existence of
destabihizing perturbations; however, it is possible to do better. To obtain
an understanding of just how many destabilizing perturbations actually
exist, let (1), (2), (11), and (12) have orders n, n + A, k, and kK + K,
respectively; defineg = (n+ M(r + A+ m+p)+ (k+ Ok + Kk
+ p + m). Also, consider the variety in If{¢ consisting of all (A, ***,
Cy, Fyy, +++, Hy) such that (3)-(6) and (13) and (14) are satisfied, and let
V C 117 denote the intersection of that variety with the subset in which
Az and Fy; are strictly stable. ¥ may be interpreted as the set of all
possible state augmentations of (1) and (11) of order A and K,
respectively. Finally, let I' € 1139 be the set of all points for which (X, Y,
Z) is controllable and observable and X is nonsingular with an eigenvalue
in S. We are interested in properties of the set ¥ N T,

Theorem 4:

1) ¥V N T is relatively open in V.
2) ¥V C I'isnonempty if K = 2and cithera) D = Oand# = 20rb) D
# 0and # = rank D.

Proof:

1) This 15 obvious since T is open in §19.
2) Suppose D = 0 and consider

2%/(s+ )70 0 0 2ts/(s+1)¥ 0 -+ 0
0 | ue)= 0 ;

T(s)= :
0 ----0 0.0

Let (A3, By, Cy) and (Fy, G, H)) be controllable and observable
realizations of T and U, respectively. Then Ay, and Fy; are strictly stable,
~ CiA,'By = T(C) = D, and ~ H,F}'G, = U(0) = 0. Note that T
and U have degrees / and K. Since (X, Y, Z) has transfer function

V(sy=(I-T(s)U(s))~' T(s)

55+ )((s+ 1) E=27%g) 0+ 0

0

0 . 0
and V has characteristic polynomial A(s) = (s + 1)7+% - 27+%g it
follows that (X, Y, Z) is controllable and observable and X is nonsingular

with a unit cigenvalue,
Now suppuse D # 0. There exist nonsingular matrices M and N such

that
I 0
MDN = [0 o]
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where r = rank D. Lot

Wse )" !

1/(s+ 1) } 0
= M- e i
T=M"" __l/(s+l)’ N
0 | op-rxm-r
270k s g e N0 0 0
Uls)=N 0 | o
0 e D
Then
V(s)=(I-T(s)V() ' T(s)=M"}
(S'O‘I)‘/((S"‘I)'““r"*2”"5)‘
I/‘..S"f-l) 0 N-1
sy o
0 f Op-rxm-r

has characterisic polynomial A(s) = (s + 1)* (s + 1)"*4 7+~
2#+£-r+15) Reasoning similarly as for part a), we conclude thut A4y and
Fyy are strictly stable, (4) and (14) hold, (X, Y, Z) is controlluble and
observable, and X is nonsingular with a unit cigenvalue.

To complete the proof, we nced only choose 43, Ay Fiy, and Fy
arbitrarily and solve for the remaining matrices from (3), (4 and (13),
(14). u

Part 1) of Theorem 4 demonstrates that, in a cenain sense, the high-
frequency effects which bring about closed-loop instability do not
correspond to the complement of a generic set, and hence cunnot be
dismissed as merely a pathological case.

V. CONCLUSIONS

We have shown that input-output information alone is insufficient for
designing robust linear compensators. This conclusion leads one immedi-
ately to ask what further information is actually required to allow a robust
design. Although we cannot give a clear answer yet, we can offer some
insight. The development of our results indicates the high-frequency
behavior in (2) and (12) plays a role in destabilization. Such behavior is
closely related to the infinite-frequency structure of (2) and (12) with ¢ =
0 (see, e.g., [14]). One might therefore suspect that some knowledge of
the poles and zeros at infinity in cither the plant or compensator is
essential. The exact form of such information and whether it cun be cusily
measured are important topics for further research,
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A Nyquist-Type Stability Test for Multivariable
Distributed Systems

D. W. LUSE

Abstract—A muitivariable Nyquist criterion is given which appiies to a
wide class of openoop iransfer matrices, including some which are
improper or have infinitely many poles in the right-halt plane, Applica.
tion of the test 1o specific examples requires only elementary knowledge
of complex variable theory.

1. INTRODUCTION

The Nyquist test [6] for closed-loop stability of systems in terms of
open-loop properties has been generalized for applicability to many types
of feedback situations. For linear systcms, the main three directions of
research have been toward multivariable systems as originated by
MacFarlane {1], distributed systems (e.g., {2]-15]). and nonscalar gain
variations (e.g., {7]). The more sophisticated stability tests often involve
technical concepts such as the Fredholm index and almost periodic
functions. The test given in this note applies to a very wide class of
transfer matrices, but the stability conditions themselves involve only the
winding numbers of simple, closed, piecewise-smooth curves. This
aliows a number of theoretical difficulties to be ignored in the theorem
statement, and to be evaded in practice for many particular examples.
These advantages are gained through two sacrifices of hypothesis. When
stability of distributed systems is considered, the type (or types) of L,
stability is a concern |5], [10]. For this note, stubility is restricied to be
finite-gain L, stability. The second sacrifice is that the open-loop transfer
matrix must be evaluated at some points in the open righi-half plane.

Scction Il of this note states and briefly proves a version of the Nyuist
criterion. Also included are four simple examples, Three of these are
pathological examples to illustrate the strengths of the theory, while the
fourth one shows why (idealized models of) feedback loops containing
wave propagation behavior are not robust to small time delays.

fI. NYQUIST-TYPE STABILITY TEST

A number of definitions from distribution theory are needed at this
pont. These allow for a brief and general theorem statement. The
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(ally stable semtprsuc. Special attantion will
ne given to relations tetween the hypotheses used
for the convergence results and convergence pro-
~erties of the transfer functions for the approx-
jrating systems.
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5:30 PM:

Approximation techniques for parabolic control
systems: a variational approach

In this paper we consider the linear quad-
ratic regulator probiem for a class of boundary
control problems for parabolic systems. The
prcblem is formulated using a variational
approach and an approximation theory is devel-
oped for solutions of the associated operator
Riccati equation. Our study includes strongly-
damped elastic systems.

H.T. Banks

K. Ito

Center for Control Sciences
Brown University
Providence, RI 02912

6:00 BPM
Yniform stabilization/exact controllability from
the boundary of thermoelastic plates

We consider the small vibrations of a'thin
homogeneous, thermally and elastically isofropic
plate of uniform thickness. It is known that
thermal dissigation alone is sufficient to strong-
ly, but not uniformly, stabilize the elastic com-
ponents of the motion. It will be shown that
theintroduction of additional dissipation through
the action of bending and twisting moments, and
shear force, at the boundary leads to uniform
asymptotic stability and to explicit asymptotic
energy estimates. The more difficult question of
exact controllability of the elastic dynamics by
means of such boundary forces and moments will
also be considered., It may be shown that if the
thermal diffusivity is sufficiently small, the
reachable set of the elastic components of the
motion is essentially the same as for purely
elastic plate motion.
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Department of Mathematics
Georgetown University
Washington, ODC 20057
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Chalr: Joyce O’Halloran

4:30 PM
On the Topological Structure of the Orbit Space
of Controllable Generalized Linear Systems

Abstract: We study the topology of the orbit
space of controllable descriptor systems modulo
restricted system equivalence, Using a scaling
action, we prove that this space is an analytic
manifold. Using the Weierstrass decomposition,
we obtain an analytic stratification of this
manifold. By decomposing the strata into
generalized Hermite cells, and using tools from
Borel-Moore homology, we compute the singular
homology groups for this space in the complex
cases. Consequently, the orbit space of
controllable descriptor systems is a smooth
compactification of the orbit space of controlle
able state space systems modulo change of basis
in the state space.

Uwe Helmke, Department of Mathematics, University
of Regensburg, 8400 Regensburg, West Germany;

Mark A. Shayman, Electrical Engineering Department
and Systems Ressarch Center, University of
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5100 PN
A Geomerric Decomposftion Theoreum for Singularly
Pert Systems with Applications to Convergence
of Sojutions

tet E and A be nxn matrix-valued analytic
functions of a nonnegative real parameter ¢ with
sE(&)-A{e) a regular matrix pencil for all ¢. The
limiting behavior of the solutfons of the family
of differential equations

E(s)x=A(e)x (1

as ¢=—0" {s at best only partially understood.
Some sufficient conditions are known for certain
types of convergence, but no necegsary and
sufficient conditions are known for nontrivial
topologies. We first present a new geometric
decomposition theorem for (1), We then show that
this result enables us to prove a necessary and
sufficient condition under which, for any Initial
vector, the corresponding solutions of (1)
converge uniformly on compact subsets of (0.»)
with bounded peaking in [0,1].
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